Journal Home > Volume 15 , Issue 7

Rational design and construction of step-scheme (S-scheme) photocatalyst has received much attention in the field of CO2 reduction because of its great potential to solve the current energy and environmental crises. In this study, a series of plate-like WO3/CuBi2O4 (WO/CBO) photocatalysts were synthesized. The CO and CH4 yields over optimal composite reached 1,115.8 and 67.2 µmol/m2 after 9 h visible light illumination (λ > 400 nm), which was higher than those of two pure catalysts in CO 2 photoreduction. The product yields slightly decreased in the 7th cycling. Besides, the staggered band structure of heterojunction was characterized by diffuse reflectance spectroscopy (DRS) and valence band-X-ray photoelectron spectroscopy (VB-XPS), and a S-scheme charge transfer mechanism was verified by detecting electron spin resonance (ESR) and XPS result about surface composition of WO/CBO catalyst in dark or light. This work may be useful for rational designing of S-scheme photocatalyst and provides some illuminating insights into the S-scheme transfer mechanism.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction

Show Author's information Weina Shi1,3Ji-Chao Wang2,4( )Xiaowei Guo1,3Xiu Qiao2Fang Liu1Renlong Li2Wanqing Zhang2Yuxia Hou2Huijuan Han2( )
School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453000, China
College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
Henan Photoelectrocatalytic Material and Micro-Nano Application Technology Academician Workstation, Xinxiang University, Xinxiang 450003, China
College of Chemistry, Zhengzhou University, Zhengzhou 450000, China

Abstract

Rational design and construction of step-scheme (S-scheme) photocatalyst has received much attention in the field of CO2 reduction because of its great potential to solve the current energy and environmental crises. In this study, a series of plate-like WO3/CuBi2O4 (WO/CBO) photocatalysts were synthesized. The CO and CH4 yields over optimal composite reached 1,115.8 and 67.2 µmol/m2 after 9 h visible light illumination (λ > 400 nm), which was higher than those of two pure catalysts in CO 2 photoreduction. The product yields slightly decreased in the 7th cycling. Besides, the staggered band structure of heterojunction was characterized by diffuse reflectance spectroscopy (DRS) and valence band-X-ray photoelectron spectroscopy (VB-XPS), and a S-scheme charge transfer mechanism was verified by detecting electron spin resonance (ESR) and XPS result about surface composition of WO/CBO catalyst in dark or light. This work may be useful for rational designing of S-scheme photocatalyst and provides some illuminating insights into the S-scheme transfer mechanism.

Keywords: photocatalyst, CuBi2O4, CO2 reduction , WO3 plate , step-scheme (S-scheme)

References(38)

1

Zhang, W. H.; Mohamed, A. R.; Ong, W. J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem., Int. Ed. 2020, 59, 22894–22915.

2

Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

3

Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21150–21172.

4

Bellardita, M.; Loddo, V.; Parrino, F.; Palmisano, L. (Photo)electrocatalytic versus heterogeneous photocatalytic carbon dioxide reduction. ChemPhotoChem 2021, 5, 767–2791.

5

Hao, L.; Huang, H. W.; Zhang, Y. H.; Ma, T. Y. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.

6

Peleyeju, M. G.; Viljoen, E. L. WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from waterv—A review. J. Water Process Eng. 2021, 40, 101930.

7

Novak, T. G.; Kim, J.; DeSario, P. A.; Jeon, S. Synthesis and applications of WO3 nanosheets: The importance of phase, stoichiometry, and aspect ratio. Nanoscale Adv. 2021, 3, 5166–5182.

8

Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

9

Guan, G. J.; Ye, E. Y.; You, M. L.; Li, Z. B. Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: Current status and future perspectives. Small 2020, 16, 1907087.

10

Liu, Y.; Yang, Y.; Liu, Q.; Li, Y.; Lin, J.; Li, W.; Li, J. The role of water in reducing WO3 film by hydrogen: Controlling the concentration of oxygen vacancies and improving the photoelectrochemical performance. J. Colloid Interface Sci. 2018, 512, 86–95.

11

Zheng, Y.; Chen, G.; Yu, Y. G.; Hu, Y. D.; Feng, Y. J.; Sun, J. X. Urea-assisted synthesis of ultra-thin hexagonal tungsten trioxide photocatalyst sheets. J. Mater. Sci. 2015, 50, 8111–8119.

12

Wang, H. N.; Zou, Y. H.; Sun, H. X.; Chen, Y.; Li, S. L.; Lan, Y. Q. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid-gas mode. Coord. Chem. Rev. 2021, 438, 213906.

13

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

14

Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 2019, 243, 556–565.

15

He, F.; Meng, A. Y.; Cheng, B.; Ho, W.; Yu, J. G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20.

16

Jiang, S.; Cao, J.; Guo, M. N.; Cao, D. D.; Jia X. M.; Lin, H. L.; Chen, S. F. Novel S-scheme WO3/RP composite with outstanding overall water splitting activity for H2 and O2 evolution under visible light. Appl. Surf. Sci. 2021, 558, 149882.

17

Zhou, L.; Li, Y. F.; Yang, S. J.; Zhang, M.; Wu, Z. S.; Jin, R. X.; Xing, Y. Preparation of novel 0D/2D Ag2WO4/WO3 step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chem. Eng. J. 2021, 420, 130361.

18

Mukhtar, F.; Munawar, T.; Nadeem, M. S.; Rehman, M. N. U.; Riaz, M.; Iqbal, F. Dual S-scheme heterojunction ZnO-V2O5-WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys. 2021, 263, 124372.

19

Xin, Y.; Yu, K. F.; Zhang, L. T.; Yang, Y. R.; Yuan, H. B.; Li, H. L.; Wang, L. B.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145.

20

Liu, X. L.; Xiao, J.; Ma, S.; Shi, C. X.; Pan, L.; Zou, J. J. Review on bismuth-based photocatalyst for CO2 conversion. ChemNanoMat 2021, 7, 684–698.

21

Li, C. L.; He, J. F.; Xiao, Y. Q.; Li, Y. B.; Delaunay, J. J. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ. Sci. 2020, 13, 3269–3306.

22

Gottesman, R.; Levine, I.; Schleuning, M.; Irani, R.; Abou-Ras, D.; Dittrich, T.; Friedrich, D. Van De Krol, R. Overcoming phase-purity challenges in complex metal oxide photoelectrodes: A case study of CuBi2O4. Adv. Energy Mater. 2021, 11, 2003474.

23

Wu, S. S.; Yu, X.; Zhang, J. L.; Zhang, Y. M.; Zhu, Y.; Zhu, M. S. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal. Chem. Eng. J. 2021, 411, 128555.

24

Wang, L. P.; Huang, T. T.; Yang, G. P.; Lu, C. Y.; Dong, F. L.; Li, Y. L.; Guan, W. S. The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 heterostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight. J. Hazard. Mater. 2020, 381, 120956.

25

Nishikawa, M.; Yuto, S.; Hasegawa, T.; Shiroishi, W.; Honghao, H.; Nakabayashi, Y.; Nosaka, Y.; Saito, N. Compositing effects of CuBi2O4 on visible-light responsive photocatalysts. Mater. Sci. Semicond. Process. 2017, 57, 12–17.

26

Shinde, P. S.; Peng, X. N.; Wang, J.; Ma, Y. X.; McNamara, L. E.; Hammer, N. I.; Gupta, A.; Pan, S. L. Rapid screening of photoanode materials using scanning photoelectrochemical microscopy technique and formation of Z-scheme solar water splitting system by coupling p- and n-type heterojunction photoelectrodes. ACS Appl. Energy Mater. 2018, 1, 2283–2294.

27

Liu, Y. M.; Gong, Z. Y.; Lv, H.; Ren, H.; Xing, X. Y. Rational design of Au decorated Mn0.5Cd0.5S/WO3 step-scheme heterostructure with multichannel charge transfer and efficient H2 generation. Appl. Surf. Sci. 2020, 526, 146734.

28

Du, X. Y.; Song, S.; Wang, Y. T.; Jin, W. F.; Ding, T.; Tian, Y.; Li, X. G. Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production. Catal. Sci. Technol. 2021, 11, 2734–2744.

29

Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143–150.

30

Majhi, D.; Mishra, A. K.; Das, K.; Bariki, R.; Mishra, B. G. Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr(VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity. Chem. Eng. J. 2021, 413, 127506.

31

Sayed, M.; Xu, F. Y.; Kuang, P. Y.; Low, J.; Wang, S. Y.; Zhang, L. Y.; Yu, J. G. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat. Commun. 2021, 12, 4936.

32

Lin, H.; Luo, S.; Zhang, H.; Ye, J. Toward solar-driven carbon recycling. Joule 2022, 6, 294–314.

33

Yuan, X. J.; Shen, D. Y.; Zhang, Q.; Zou, H. B.; Liu, Z. L.; Peng, F. Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem. Eng. J. 2019, 369, 292–301.

34

Cui, D. D.; Hao, W. C.; Chen, J. The synergistic effect of heteroatom doping and vacancy on the reduction of CO2 by photocatalysts. ChemNanoMat 2021, 7, 894–901.

35

Xu, F. Y.; Meng, K.; Cheng, B.; Wang. S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in selfassembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

36

Oropeza, F. E.; Dzade, N. Y.; Pons-Martí, A.; Yang, Z. N.; Zhang, K. H. L.; De Leeuw, N. H.; Hensen, E. J. M.; Hofmann, J. P. Electronic structure and interface energetics of CuBi2O4 photoelectrodes. J. Phys. Chem. C 2020, 124, 22416–22425.

37

Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 59, 6224–6229.

38

Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.

File
12274_2022_4271_MOESM1_ESM.pdf (870.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 November 2021
Revised: 28 January 2022
Accepted: 23 February 2022
Published: 20 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the financial supports of National Natural Science Foundation of China (Nos. 51802082 and 51903073), Natural Science Foundation of Henan Province (No. 212300410221), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 21HATIT016), Key Scientific Research Project of Colleges and Universities in Henan Province (Nos. 21A430030 and 20A150017), Key Scientific and Technological Project of Henan Province (Nos. 222102320100, 212102210473, and 212102210178), National College Student Innovantion and Entrepreneurship Training (No. 202110467024), and “Climbing” Project of Henan Institute of Science and Technology (No. 2018CG04).

Return