Journal Home > Volume 15 , Issue 7

Halide perovskite nanocrystals are potential catalysts for CO2 photoreduction, while, the strong radiative recombination and insufficient stability limit their catalytic performance and application. Herein, we report that layered double hydroxide nanosheets activate CsPbBr3 nanocrystals (CLDH) for enhanced photocatalytic CO2 reduction. These CLDH heterojunctions show the remarkably enhanced CO2 photoreduction performance; without cocatalyst and sacrificial agent, the average electron consumption rate of CLDH (49.16 μmol·g−1·h−1) is approximately 3.7 times higher than that of pristine CsPbBr3. Also, CLDH catalyst exhibits a robust stability after ten cycles over 30 h.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction

Show Author's information Shuang Zhao1Qian Liang1( )Zhongyu Li1Hong Shi2Zhenyu Wu2Hui Huang2( )Zhenhui Kang2,3,4
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau, China
Institute of Advanced Materials, Northeast Normal University, Changchun 130024, China

Abstract

Halide perovskite nanocrystals are potential catalysts for CO2 photoreduction, while, the strong radiative recombination and insufficient stability limit their catalytic performance and application. Herein, we report that layered double hydroxide nanosheets activate CsPbBr3 nanocrystals (CLDH) for enhanced photocatalytic CO2 reduction. These CLDH heterojunctions show the remarkably enhanced CO2 photoreduction performance; without cocatalyst and sacrificial agent, the average electron consumption rate of CLDH (49.16 μmol·g−1·h−1) is approximately 3.7 times higher than that of pristine CsPbBr3. Also, CLDH catalyst exhibits a robust stability after ten cycles over 30 h.

Keywords: photocatalysis, CsPbBr3, Z-scheme, CO2 reduction , NiAl-LDH

References(58)

1

Lin, Y. H.; Sakai, N.; Da, P. M.; Wu, J. Y.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J. L.; Oliver, R. D. J.; Lim, J. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102.

2

Ye, J. Z.; Byranvand, M. M.; Martinez, C. O.; Hoye, R. L. Z.; Saliba, M.; Polavarapu, L. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem., Int. Ed. 2021, 60, 21636–21660.

3

Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

4

Wang, R.; Huang, T. Y.; Xue, J. J.; Tong, J. H.; Zhu, K.; Yang, Y. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 2021, 15, 411–425.

5

Chen, B.; Fei, C. B.; Chen, S. S.; Gu, H. Y.; Xiao, X.; Huang, J. S. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 2021, 12, 5859.

6

Liu, P. Y.; Han, N.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. High-quality ruddlesden-popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 2021, 33, 2002582.

7

Liu, C.; Igci, C.; Yang, Y.; Syzgantseva, O. A.; Syzgantseva, M. A.; Rakstys, K.; Kanda, H.; Shibayama, N.; Ding, B.; Zhang, X. F. et al. Dopant-free hole transport materials afford efficient and stable inorganic perovskite solar cells and modules. Angew. Chem., Int. Ed. 2021, 60, 20489–20497.

8

Wolff, C. M.; Canil, L.; Rehermann, C.; Linh, N. N.; Zu, F. S.; Ralaiarisoa, M.; Caprioglio, P.; Fiedler, L.; Stolterfoht, M.; Kogikoski, S. et al. Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells. ACS Nano 2020, 14, 1445–1456.

9

Liu, X. X.; Wu, Z. Z.; Fu, X. X.; Tang, L. T.; Li, J. M.; Gong, J. B.; Xiao, X. D. Highly efficient wide-band-gap perovskite solar cells fabricated by sequential deposition method. Nat. Energy 2021, 86, 106114.

10

Liang, S.; Zhang, M. Y.; Biesold, G. M.; Choi, W.; He, Y. J.; Li, Z. L.; Shen, D. F.; Lin, Z. Q. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater. 2021, 33, 2005888.

11

Yang, T.; Zheng, Y. P.; Du, Z. T.; Liu, W. N.; Yang, Z. B.; Gao, F. M.; Wang, L.; Chou, K. C.; Hou, X. M.; Yang, W. Y. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 2018, 12, 1611–1617.

12

Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

13

Wang, J. C.; Wang, J.; Li, N. Y.; Du, X. Y.; Ma, J.; He, C. H.; Li, Z. Q. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 31477–31485.

14

Wei, J. J.; Zheng, W.; Huang, P.; Gong, Z. L.; Liu, Y.; Lu, S.; Li, Z.; Chen, X. Y. Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites. Nano Today 2021, 39, 101179.

15

Chen, Y. H.; Ye, J. K.; Chang, Y. J.; Liu, T. W.; Chuang, Y. H.; Liu, W. R.; Liu, S. H.; Pu, Y. C. Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures. Appl. Catal. B:Environ. 2021, 284, 119751.

16

Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 2020, 5, 1107–1123.

17

Chong, R. F.; Su, C. H.; Du, Y. Q.; Fan, Y. Y.; Ling, Z.; Chang, Z. X.; Li, D. L. Insights into the role of MgAl layered double oxides interlayer in Pt/TiO2 toward photocatalytic CO2 reduction. J. Catal. 2018, 363, 92–101.

18

Tan, L.; Wang, Z. L.; Zhao, Y. F.; Song, Y. F. Recent progress on nanostructured layered double hydroxides for visible-light-induced photoreduction of CO2. Chem. Asian J. 2020, 15, 3380–3389.

19

Kumar, S.; Isaacs, M. A.; Trofimovaite, R.; Durndell, L.; Parlett, C. M. A.; Douthwaite, R. E.; Coulson, B.; Cockett, M. C. R.; Wilson, K.; Lee, A. F. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Appl. Catal. B:Environ. 2017, 209, 394–404.

20

Jiang, H. Y.; Katsumata, K. I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. Appl. Catal. B:Environ. 2018, 224, 783–790.

21

Zhang, T. T.; Shang, H. S.; Zhang, B.; Yan, D. P.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.

22

Zhao, S.; Pan, D.; Liang, Q.; Zhou, M.; Yao, C.; Xu, S.; Li, Z. Y. Ultrathin NiAl-layered double hydroxides grown on 2D Ti3C2Tx MXene to construct core–shell heterostructures for enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 2021, 125, 10207–10218.

23

Shi, Q. R.; Zhang, X. Y.; Yang, Y.; Huang, J. J.; Fu, X. L.; Wang, T. Y.; Liu, X. D.; Sun, A. W.; Ge, J. H.; Shen, J. Y. et al. 3D hierarchical architecture collaborating with 2D/2D interface interaction in NiAl-LDH/Ti3C2 nanocomposite for efficient and selective photoconversion of CO2. J. Energy Chem. 2021, 59, 9–18.

24

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

25

Langreth, D. C.; Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 1983, 28, 1809–1834.

26

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

27

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

28

Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 2018, 10, 2667–2678.

29

Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.

30

Wan, S. P.; Ou, M.; Zhong, Q.; Wang, X. M. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 2019, 358, 1287–1295.

31

Jo, W. K.; Moru, S.; Tonda, S. A green approach to the fabrication of a TiO2/NiAl-LDH core–shell hybrid photocatalyst for efficient and selective solar-powered reduction of CO2 into value-added fuels. J. Mater. Chem. A 2020, 8, 8020–8032.

32

Megala, S.; Sathish, M.; Harish, S.; Navaneethan, M.; Sohila, S.; Liang, B.; Ramesh, R. Enhancement of photocatalytic H2 evolution from water splitting by construction of two dimensional gC3N4/NiAl layered double hydroxides. Appl. Surf. Sci. 2020, 509, 144656.

33

Shu, M. Y.; Zhang, Z. J.; Dong, Z. L.; Xu, J. Y. CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction. Carbon 2021, 182, 454–462.

34

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

35

Zhang, Z. J.; Shu, M. Y.; Jiang, Y.; Xu, J. Y. Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem. Eng. J. 2021, 414, 128889.

36

Jo, W. K.; Kim, Y. G.; Tonda, S. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation. J. Hazard. Mater. 2018, 357, 19–29.

37

Wang, X. D.; He, J.; Li, J. Y.; Lu, G.; Dong, F.; Majima, T.; Zhu, M. S. Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 277, 119230.

38

Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

39

Wang, X. D.; He, J.; Mao, L.; Cai, X. Y.; Sun, C. Z.; Zhu, M. S. CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2021, 416, 128077.

40

Wei, Y.; Cheng, G.; Xiong, J. Y.; Xu, F. F.; Chen, R. Positive Ni(HCO3)2 as a novel cocatalyst for boosting the photocatalytic hydrogen evolution capability of mesoporous TiO2 nanocrystals. ACS Sustainable Chem. Eng. 2017, 5, 5027–5038.

41

Zhang, D. X.; Dong, W. X.; Liu, Y. H.; Gu, X. Q.; Yang, T. Y.; Hong, Q.; Li, D.; Zhang, D. Q.; Zhou, H. B.; Huang, H. et al. Ag-In-Zn-S quantum dot-dominated interface kinetics in Ag-In-Zn-S/NiFe LDH composites toward efficient photoassisted electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2021, 13, 42125–42137.

42

Tao, X. P.; Wang, Y.; Qu, J. S.; Zhao, Y.; Li, R. G.; Li, C. Achieving selective photocatalytic CO2 reduction to CO on bismuth tantalum oxyhalogen nanoplates. J. Mater. Chem. A 2021, 9, 19631–19636.

43

Wang, F. L.; Hou, T. T.; Zhao, X.; Yao, W.; Fang, R. Q.; Shen, K.; Li, Y. W. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690.

44

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

45

Liang, Q.; Liu, L. J.; Wu, Z. Y.; Nie, H. D.; Shi, H.; Li, Z. Y.; Kang, Z. H. Polytriptycene@CdS double shell hollow spheres with enhanced interfacial charge transfer for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 9105–9112.

46

Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

47

Lin, J.; Dong, Y. Z.; Zhang, Q.; Hu, D. D.; Li, N.; Wang, L.; Liu, Y.; Wu, T. Interrupted chalcogenide-based zeolite-analogue semiconductor: Atomically precise doping for tunable electro-/photoelectrochemical properties. Angew. Chem., Int. Ed. 2015, 54, 5103–5107.

48

Saha, S.; Das, G.; Thote, J.; Banerjee, R. Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel. J. Am. Chem. Soc. 2014, 136, 14845–14851.

49

Jia, Y. F.; Li, S. P.; Gao, J. Z.; Zhu, G. Q.; Zhang, F. C.; Shi, X. J.; Huang, Y.; Liu, C. L. Highly efficient (BiO)2CO3-BiO2−x-graphene photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Appl. Catal. B:Environ. 2019, 240, 241–252.

50

Li, X. Z.; Shi, H. Y.; Zuo, S. X.; Gao, B. Y.; Han, C. Y.; Wang, T. S.; Yao, C.; Ni, C. Y. Lattice reconstruction of one-dimensional mineral to achieve dendritic heterojunction for cost-effective nitrogen photofixation. Chem. Eng. J. 2021, 414, 128797.

51

Hussain, M.; Rashid, M.; Saeed, F.; Bhatti, A. S. Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3. J. Mater. Sci. 2021, 56, 528–542.

52

Li, S. Q.; Jin, Z. Q.; Lai, W. S.; Zhang, H. Y.; Wang, D.; Song, S.; Zeng, T. Alkali and donor–acceptor bridged three-dimensional interpenetrating polymer networks boost photocatalytic performance by efficient electron delocalization and charge transfer. Appl. Catal. B:Environ. 2021, 292, 120153.

53

Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.

54

Zhang, L. X.; Feng, L. P.; Li, P.; Chen, X.; Gao, Y.; Gong, Y. S.; Du, Z. L.; Zhang, S.; Zhang, A. C.; Chen, G. F. et al. Plasma-assisted doping of nitrogen into cobalt sulfide for loading cadmium sulfide: A direct Z-scheme heterojunction for efficiently photocatalytic Cr(VI) reduction under visible light. Chem. Eng. J. 2021, 417, 129222.

55

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xian, Q. M.; Zhao, Y. L. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl. Catal. B:Environ. 2021, 291, 120126.

56

Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 2018, 8, 3602–3635.

57

Zhou, H.; Li, P.; Liu, J.; Chen, Z. P.; Liu, L. Q.; Dontsova, D.; Yan, R. Y.; Fan, T. X.; Zhang, D.; Ye, J. H. Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy 2016, 25, 128–135.

58

Han, C. Q.; Zhang, R. M.; Ye, Y. H.; Wang, L.; Ma, Z. Y.; Su, F. Y.; Xie, H. Q.; Zhou, Y.; Wong, P. K.; Ye, L. Q. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J. Mater. Chem. A 2019, 7, 9726–9735.

File
4268_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 November 2021
Revised: 22 February 2022
Accepted: 22 February 2022
Published: 28 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is supported by National Key Basic Research Program of China (Nos. 2020YFA0406104 and 2020YFA0406101), National MCF Energy R&D Program (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), National Natural Science Foundation of China (Nos. 51725204, 21771132, 21471106, and 51972216), Natural Science Foundation of Jiangsu Province (No. BK20190041), Natural Science Foundation of Jiangsu Province-Excellent Youth Foundation (No. BK20190102), Key-Area Research and Development Program of GuangDong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, and Suzhou Key Laboratory of Functional Nano & Soft Materials.

Return