Journal Home > Volume 15 , Issue 7

Carbonaceous materials represent the dominant choice of materials for anodic lithium storage in many energy storage devices. Nevertheless, the nonpolar carbonaceous materials offer weak adsorption toward Li+ that largely denies the high-rate Li+ storage. Herein, the atomic Fe sites decorated carbon nanofibers (AICNFs) facilely produced by electrospinning are reported for kinetically accelerated Li+ storage. Theoretical calculation reveals that the atomic Fe sites possess coordination unsaturated electronic configuration, enabling suitable bonding energy and facilitated diffusion path of Li+. As a result, the optimal structure displays a high capacitive contribution up to 95.9% at a scan rate of 2.0 mV·s−1. In addition, ultrahigh capacity retention of 97% is afforded after 5,000 cycles at a current density of 3 A·g−1. Moreover, the interlaced fiber structure enabled by electrospinning benefits structural stability and improved conductivity even at thick electrodes, thus allowing a high areal capacity of 1.76 mAh·cm−2 at a loading of 8 mg·cm−2. Because of these structure and performance merits, the lithium-ion capacitor containing the AICNF-based anode delivers a high energy density and large power density.

File
12274_2022_4266_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 January 2022
Revised: 18 February 2022
Accepted: 21 February 2022
Published: 01 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21975258, 22179145, and 22138013), the startup support grant from China University of Petroleum (East China), and Shandong Provincial Natural Science Foundation (No. ZR2020ZD08).

Return