Journal Home > Volume 15 , Issue 7

To perform the electrochemical nitrogen reduction reaction (NRR) under milder conditions for sustainable ammonia production, electrocatalysts should exhibit high selectivity, activity, and durability. However, the key restrictions are the highly stable N≡N triple bond and the competitive hydrogen evolution reaction (HER), which make it difficult to adsorb and activate N2 on the surface of electrocatalysts, leading to a low ammonia yield and Faraday efficiency. Inspired by the enzymatic nitrogenase process and using the Fe-Mo as the active center, here we report supported Fe2Mo3O8/XC-72 as an effective and durable electrocatalyst for the NRR. Fe2Mo3O8/XC-72 exhibited NRR activity with an NH3 yield of 30.4 μg·h−1·mg−1 (−0.3 V) and a Faraday efficiency of 8.2% (−0.3 V). Theoretical calculations demonstrated that the electrocatalytic nitrogen fixation mechanism involved the Fe atom in the Fe2Mo3O8/XC-72 electrocatalyst acting as the main active site in the enzymatic pathway (*NH2 → *NH3), which activated nitrogen molecules and promoted the NRR performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions

Show Author's information Guohua Liu1Lijuan Niu1Zhixue Ma1Li An1( )Dan Qu1Dandan Wang2Xiayan Wang1Zaicheng Sun1( )
Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China

Abstract

To perform the electrochemical nitrogen reduction reaction (NRR) under milder conditions for sustainable ammonia production, electrocatalysts should exhibit high selectivity, activity, and durability. However, the key restrictions are the highly stable N≡N triple bond and the competitive hydrogen evolution reaction (HER), which make it difficult to adsorb and activate N2 on the surface of electrocatalysts, leading to a low ammonia yield and Faraday efficiency. Inspired by the enzymatic nitrogenase process and using the Fe-Mo as the active center, here we report supported Fe2Mo3O8/XC-72 as an effective and durable electrocatalyst for the NRR. Fe2Mo3O8/XC-72 exhibited NRR activity with an NH3 yield of 30.4 μg·h−1·mg−1 (−0.3 V) and a Faraday efficiency of 8.2% (−0.3 V). Theoretical calculations demonstrated that the electrocatalytic nitrogen fixation mechanism involved the Fe atom in the Fe2Mo3O8/XC-72 electrocatalyst acting as the main active site in the enzymatic pathway (*NH2 → *NH3), which activated nitrogen molecules and promoted the NRR performance.

Keywords: density functional theory calculations, nitrogen reduction reaction (NRR), Fe2Mo3O8/XC-72 electrocatalyst

References(46)

1

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

2

Niu, L. J.; Wang, D. D.; Xu, K.; Hao, W. C.; An, L.; Kang, Z. H.; Sun, Z. C. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Res. 2021, 14, 4093–4099.

3

Wan, Y. C.; Xu, J. C.; Lv, R. T. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69–90.

4

Xu, H.; Ithisuphalap, K.; Li, Y.; Mukherjee, S.; Lattimer, J.; Soloveichik, G.; Wu, G. Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes. Nano Energy 2020, 69, 104469.

5

Zhang, W. Q.; Low, J.; Long, R.; Xiong, Y. J. Metal-free electrocatalysts for nitrogen reduction reaction. EnergyChem 2020, 2, 100040.

6

Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

7

Shi, L.; Yin, Y.; Wang, S. J.; Xu, X. Y.; Wu, H.; Zhang, J. Q.; Wang, S. B.; Sun, H. Q. Rigorous and reliable operations for electrocatalytic nitrogen reduction. Appl. Catal. B: Environ. 2020, 278, 119325.

8

Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

9

Zhai, Y. L.; Zhu, Z. J.; Zhu, C. Z.; Chen, K.; Zhang, X. J.; Tang, J.; Chen, J. Single-atom catalysts boost nitrogen electroreduction reaction. Mater. Today 2020, 38, 99–113.

10

Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

11

Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor–acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

12

Kugler, K.; Luhn, M.; Schramm, J. A.; Rahimi, K.; Wessling, M. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys. Chem. Chem. Phys. 2015, 17, 3768–3782.

13

Wei, H.; Jiang, Q.; Ampelli, C.; Chen, S. M.; Perathoner, S.; Liu, Y. F.; Centi, G. Enhancing N2 fixation activity by converting Ti3C2 mxenes nanosheets to nanoribbons. ChemSusChem 2020, 13, 5614–5619.

14

Zhou, Y.; Yu, X. P.; Sun, F. C.; Zhang, J. MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction. Dalton Trans. 2020, 49, 988–992.

15

Sultana, S.; Mansingh, S.; Parida, K. M. Phosphide protected FeS2 anchored oxygen defect oriented CeO2NS based ternary hybrid for electrocatalytic and photocatalytic N2 reduction to NH3. J. Mater. Chem. A 2019, 7, 9145–9153.

16

Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

17

Yu, G. S.; Guo, H. R.; Kong, W. H.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Electrospun TiC/C nanofibers for ambient electrocatalytic N2 reduction. J. Mater. Chem. A 2019, 7, 19657–19661.

18

Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. 2020, 132, 10980–10985.

19

Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 2021, 14, 2711–2716.

20

Yu, X. M.; Peng, H.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

21

Liu, Y. T.; Chen, X. X.; Yu, J. Y.; Ding, B. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 18903–18907.

22

Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

23

Yang, B.; Ding, W. L.; Zhang, H. H.; Zhang, S. J. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687.

24

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

25

Rao, L.; Xu, X.; Adamo, C. Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase. ACS Catal. 2016, 6, 1567–1577.

26

Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

27

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

28

Milton, R. D.; Abdellaoui, S.; Khadka, N.; Dean, D. R.; Leech, D.; Seefeldt, L. C.; Minteer, S. D. Nitrogenase bioelectrocatalysis: Heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ. Sci. 2016, 9, 2550–2554.

29

Ahmed, M. I.; Chen, S.; Ren, W. H.; Chen, X. J.; Zhao, C. Synergistic bimetallic CoFe2O4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia. Chem. Commun. 2019, 55, 12184–12187.

30

Chu, K.; Li, Q. Q.; Cheng, Y. H.; Liu, Y. P. Efficient electrocatalytic nitrogen fixation on FeMoO4 nanorods. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796.

31

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

32

Li, C. B.; Yu, J. L.; Yang, L.; Zhao, J. X.; Kong, W. H.; Wang, T.; Asiri, A. M.; Li, Q.; Sun, X. P. Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 9597–9601.

33

Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.

34

Lu, K.; Xia, F.; Li, B. M.; Liu, Y. Z.; Razak, I. B. A.; Gao, S. Y.; Kaelin, J.; Brown, D. E.; Cheng, Y. W. Synergistic multisites Fe2Mo6S8 electrocatalysts for ambient nitrogen conversion to ammonia. ACS Nano 2021, 15, 16887–16895.

35

Yao, J. X.; Zhou, Y. T.; Yan, J. M.; Jiang, Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions. Adv. Energy Mater. 2021, 11, 2003701.

36

Zhao, X. H.; Lan, X.; Yu, D. K.; Fu, H.; Liu, Z. M.; Mu, T. C. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions. Chem. Commun. 2018, 54, 13010–13013.

37

An, L.; Jiang, N.; Li, B.; Hua, S. X.; Fu, Y. T.; Liu, J. X.; Hao, W.; Xia, D. G.; Sun, Z. C. A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. J. Mater. Chem. A 2018, 6, 5962–5970.

38

Zhao, Y. L.; Li, F. S.; Li, W. L.; Li, Y. Z.; Liu, C.; Zhao, Z. Q.; Shan, Y.; Ji, Y. F.; Sun, L. C. Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded few catalyst. Angew. Chem., Int. Ed. 2021, 60, 20331–20341.

39

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

40

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

41

Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

42

Zhang, Y. Z.; Hu, J.; Zhang, C. X.; Liu, Y. Z.; Xu, M. Y.; Xue, Y. J.; Liu, L. F.; Leung, M. K. H. Bimetallic Mo–Co nanoparticles anchored on nitrogen-doped carbon for enhanced electrochemical nitrogen fixation. J. Mater. Chem. A 2020, 8, 9091–9098.

43

Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q.; Li, Y. Y.; Huang, X. Adsorbing and activating N2 on heterogeneous Au–Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

44

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

45

Wu, J.; Wang, Z. X.; Li, S. W.; Niu, S. Q.; Zhang, Y. Y.; Hu, J.; Zhao, J. X.; Xu, P. FeMoO4 nanorods for efficient ambient electrochemical nitrogen reduction. Chem. Commun. 2020, 56, 6834–6837.

46

Chu, Z. Q.; Stampfl, C.; Duan, X. M. Boron-doped g-C6N6 layer as a metal-free photoelectrocatalyst for N2 reduction reaction. J. Phys. Chem. C 2019, 123, 28739–28743.

File
12274_2022_4262_MOESM1_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2021
Revised: 18 February 2022
Accepted: 21 February 2022
Published: 29 March 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge financial support from the Beijing Municipal High Level Innovative Team Building Program (No. IDHT20180504), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910005017), the National Natural Science Foundation of China (Nos. 51801006, 21805004, 21872001, and 21936001), Beijing Natural Science Foundation (No. 2192005), and Beijing Municipal Science and Natural Science Fund Project (Nos. KM201910005016 and 2017000020124G085).

Return