Journal Home > Volume 15 , Issue 11

The development of deeply cyclable lithium metal batteries with fast-charging capability offers a promising solution to relieve the “range anxiety” in driving electric vehicles. Conventional lithium metal anodes suffered from low operating current densities and shallow charge/discharge depths, owing to the intrinsic dendrite growth governed by Sand’s law. Herein, we come up with a novel design of heavy-duty lithium metal anode fabricated by partially infusing the three-dimensional (3D) porous graphene aerogel with molten Li. Both electroanalytical measurements and simulations show that the unique electrode architecture brings notable advantages in mediating smooth Li plating/stripping, including reduced local current density, inhibited dendrite growth, buffered volume fluctuation, as well as more efficient Li utilization. Consequently, a remarkable cycling performance in symmetric cells for over 400 cycles (800 h) with an ultrahigh cycling capacity of 15 mAh·cm−2 at 15 mA·cm−2 is achieved, which, to our best knowledge, has been never seen in literature. LiFePO4 full cells demonstrate a superb rate capability up to 10 C and a prolonged cycling of 1,600 cycles at 2 C with the per-cycle capacity decay of only 0.023%. This study paves the way for the ultimate deployment of lithium metal batteries in real-world applications that require fast charging and deep cycling.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel

Show Author's information Yong Ma1,§Yuting Gu1,§Ying He1Le Wei1Yuebin Lian2Weiyi Pan1Xinjian Li1Yanhui Su1Yang Peng1( )Zhao Deng1( )Zhongfan Liu1,3,4
College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
School of Photoelectric Engineering, Changzhou institute of technology, Changzhou 213032, China
Beijing Graphene Institute (BGI), Beijing 100095, China
Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

§ Yong Ma and Yuting Gu contributed equally to this work.

Abstract

The development of deeply cyclable lithium metal batteries with fast-charging capability offers a promising solution to relieve the “range anxiety” in driving electric vehicles. Conventional lithium metal anodes suffered from low operating current densities and shallow charge/discharge depths, owing to the intrinsic dendrite growth governed by Sand’s law. Herein, we come up with a novel design of heavy-duty lithium metal anode fabricated by partially infusing the three-dimensional (3D) porous graphene aerogel with molten Li. Both electroanalytical measurements and simulations show that the unique electrode architecture brings notable advantages in mediating smooth Li plating/stripping, including reduced local current density, inhibited dendrite growth, buffered volume fluctuation, as well as more efficient Li utilization. Consequently, a remarkable cycling performance in symmetric cells for over 400 cycles (800 h) with an ultrahigh cycling capacity of 15 mAh·cm−2 at 15 mA·cm−2 is achieved, which, to our best knowledge, has been never seen in literature. LiFePO4 full cells demonstrate a superb rate capability up to 10 C and a prolonged cycling of 1,600 cycles at 2 C with the per-cycle capacity decay of only 0.023%. This study paves the way for the ultimate deployment of lithium metal batteries in real-world applications that require fast charging and deep cycling.

Keywords: dendrite-free, graphene aerogel, fast-charging, partial infusion, Li metal anodes

References(44)

[1]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[2]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[3]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[4]

Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

[5]

Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

[6]

Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1839.

[7]

Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.

[8]

Yu, Z. H.; Cui, Y.; Bao, Z. N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 2020, 1, 100119.

[9]

Li, S.; Luo, Z.; Li, L.; Hu, J. G.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 2020, 32, 306–319.

[10]

Jie, Y. L.; Liu, X. J.; Lei, Z. W.; Wang, S. Y.; Chen, Y. W.; Huang, F. Y.; Cao, R. G.; Zhang, G. Q.; Jiao, S. H. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. 2020, 132, 3533–3538.

[11]

Jiang, C.; Jia, Q. Q.; Tang, M.; Fan, K.; Chen, Y.; Sun, M. X.; Xu, S. F.; Wu, Y. C.; Zhang, C. Y.; Ma, J. et al. Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes. Angew. Chem., Int. Ed. 2021, 60, 10871–10879.

[12]

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

[13]

Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 2018, 9, 3729.

[14]

Deng, K. R.; Qin, J. X.; Wang, S. J.; Ren, S.; Han, D. M.; Xiao, M.; Meng, Y. Z. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte. Small 2018, 14, 1801420.

[15]

Cao, D. X.; Sun, X.; Li, Q.; Natan, A.; Xiang, P. Y.; Zhu, H. L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94.

[16]

Jiang, C.; Gu, Y. M.; Tang, M.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L.; Hu, W. P. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS Appl. Mater. Interfaces 2020, 12, 10461–10470.

[17]

Tantratian, K.; Cao, D. X.; Abdelaziz, A.; Sun, X.; Sheng, J. Z.; Natan, A.; Chen, L.; Zhu, H. L. Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays. Adv. Energy Mater. 2020, 10, 1902819.

[18]

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

[19]

Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F.; He, Y. B. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J. Mater. Chem. A 2019, 7, 15871–15879.

[20]

Shen, L.; Shi, P. R.; Hao, X. G.; Zhao, Q.; Ma, J. B.; He, Y. B.; Kang, F. Y. Progress on lithium dendrite suppression strategies from the interior to exterior by hierarchical structure designs. Small 2020, 16, 2000699.

[21]

Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.

[22]

Ma, Y.; Wei, L.; Gu, Y. T.; Hu, J. P.; Chen, Y. J.; Qi, P. W.; Zhao, X. H.; Peng, Y.; Deng, Z.; Liu, Z. F. High-performance Li-O2 batteries based on all-graphene backbone. Adv. Funct. Mater. 2020, 30, 2007218.

[23]

Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C. X.; Zhang, J.; Chen, S. H.; Xu, L.; Yuan, H.; Zhang, Q. Fast charging lithium batteries: Recent progress and future prospects. Small 2019, 15, 1805389.

[24]

Sand, H. J. S. III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 1, 45–79.

[25]

Xu, T. H.; Gao, P.; Li, P. R.; Xia, K.; Han, N.; Deng, J.; Li, Y. G.; Lu, J. Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying. Adv. Energy Mater. 2020, 10, 1902343.

[26]

Liu, S. S.; Ma, Y. L.; Zhou, Z. X.; Lou, S. F.; Huo, H.; Zuo, P. J.; Wang, J. J.; Du, C. Y.; Yin, G. P.; Gao, Y. Z. Inducing uniform lithium nucleation by integrated lithium-rich Li-in anode with lithiophilic 3D framework. Energy Storage Mater. 2020, 33, 423–431.

[27]

Kang, D.; Cai, Z. X.; Jin, Q. W.; Zhang, H. B. Bio-inspired composite films with integrative properties based on the self-assembly of gellan gum-graphene oxide crosslinked nanohybrid building blocks. Carbon 2015, 91, 445–457.

[28]

Cai, K. Q.; Zheng, M. X.; Xu, H.; Zhu, Y. J.; Zhang, L. T.; Zheng, B. D. Gellan gum/graphene oxide aerogels for methylene blue purification. Carbohydr. Polym. 2021, 257, 117624.

[29]

Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. 2018, 130, 15248–15253.

[30]

Zhai, P. B.; Liu, L. X.; Wei, Y.; Zuo, J. H.; Yang, Z. L.; Chen, Q.; Zhao, F. F.; Zhang, X. K.; Gong, Y. J. Self-healing nucleation seeds induced long-term dendrite-free lithium metal anode. Nano Lett. 2021, 21, 7715–7723.

[31]

Chen, D. D.; Liu, P.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Huang, S.; Meng, Y. Z. Covalent organic frameworks with low surface work function enabled stable lithium anode. Small 2021, 17, 2101496.

[32]

Zhou, Y.; Zhang, J. M.; Zhao, K.; Ma, Y.; Zhang, H. Z.; Song, D. W.; Shi, X. X.; Zhang, L. Q.; Ding, Y. A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes. Energy Storage Mater. 2021, 39, 403–411.

[33]

Yu, W.; Yang, J. L.; Li, J.; Zhang, K.; Xu, H. M.; Zhou, X.; Chen, W.; Loh, K. P. Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 2021, 33, 2102083.

[34]

Park, J. B.; Choi, C.; Yu, S.; Chung, K. Y.; Kim, D. W. Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 2021, 11, 2101544.

[35]

Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Sun, D. L.; Yu, X. B. Dendrite-free Li-metal anode enabled by dendritic structure. Adv. Funct. Mater. 2021, 31, 2009712.

[36]

Fang, Y. Z.; Zhang, Y.; Zhu, K.; Lian, R. Q.; Gao, Y.; Yin, J. L.; Ye, K.; Cheng, K.; Yan, J.; Wang, G. L. et al. Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019, 13, 14319–14328.

[37]

Lee, D.; Sun, S.; Kwon, J.; Park, H.; Jang, M.; Park, E.; Son, B.; Jung, Y.; Song, T.; Paik, U. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 2020, 32, 1905573.

[38]

Zhou, T.; Shen, J. D.; Wang, Z. S.; Liu, J.; Hu, R. Z.; Ouyang, L. Z.; Feng, Y. Z.; Liu, H.; Yu, Y.; Zhu, M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv. Funct. Mater. 2020, 30, 1909159.

[39]

Chen, T.; Meng, F. B.; Zhang, Z. W.; Liang, J. C.; Hu, Y.; Kong, W. H.; Zhang, X. L.; Jin, Z. Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy 2020, 76, 105068.

[40]

Liang, Z.; Yan, K.; Zhou, G. M.; Pei, A.; Zhao, J.; Sun, Y. M.; Xie, J.; Li, Y. B.; Shi, F. F.; Liu, Y. Y. et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Sci. Adv. 2019, 5, eaau5655.

[41]

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

[42]

Cao, Z. J.; Li, B.; Yang, S. B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium–copper–lithium arrays. Adv. Mater. 2019, 31, 1901310.

[43]

Nan, Y.; Li, S. M.; Han, C.; Yan, H. B.; Ma, Y. X.; Liu, J. H.; Yang, S. B.; Li, B. Interlamellar lithium-ion conductor reformed interface for high performance lithium metal anode. Adv. Funct. Mater. 2021, 31, 2102336.

[44]

Li, Z. Z.; Peng, M. Q.; Zhou, X. L.; Shin, K.; Tunmee, S.; Zhang, X. M.; Xie, C. D.; Saitoh, H.; Zheng, Y. P.; Zhou, Z. M. et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv. Mater. 2021, 33, 2100793.

Video
12274_2022_4261_MOESM2_ESM.avi
File
12274_2022_4261_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 December 2021
Revised: 18 February 2022
Accepted: 21 February 2022
Published: 21 March 2022
Issue date: November 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075193 and 22072101), the Natural Science Foundation of Jiangsu Province (No. BK20211306), the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau (No. SYG201934), and Six Talent Peaks Project in Jiangsu Province (No. TD-XCL-006). The authors also thank for the support from the Honorary Professor Program of Jiangsu Province and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Return