Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of deeply cyclable lithium metal batteries with fast-charging capability offers a promising solution to relieve the “range anxiety” in driving electric vehicles. Conventional lithium metal anodes suffered from low operating current densities and shallow charge/discharge depths, owing to the intrinsic dendrite growth governed by Sand’s law. Herein, we come up with a novel design of heavy-duty lithium metal anode fabricated by partially infusing the three-dimensional (3D) porous graphene aerogel with molten Li. Both electroanalytical measurements and simulations show that the unique electrode architecture brings notable advantages in mediating smooth Li plating/stripping, including reduced local current density, inhibited dendrite growth, buffered volume fluctuation, as well as more efficient Li utilization. Consequently, a remarkable cycling performance in symmetric cells for over 400 cycles (800 h) with an ultrahigh cycling capacity of 15 mAh·cm−2 at 15 mA·cm−2 is achieved, which, to our best knowledge, has been never seen in literature. LiFePO4 full cells demonstrate a superb rate capability up to 10 C and a prolonged cycling of 1,600 cycles at 2 C with the per-cycle capacity decay of only 0.023%. This study paves the way for the ultimate deployment of lithium metal batteries in real-world applications that require fast charging and deep cycling.
Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.
Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.
Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.
Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.
Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1839.
Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.
Yu, Z. H.; Cui, Y.; Bao, Z. N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 2020, 1, 100119.
Li, S.; Luo, Z.; Li, L.; Hu, J. G.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 2020, 32, 306–319.
Jie, Y. L.; Liu, X. J.; Lei, Z. W.; Wang, S. Y.; Chen, Y. W.; Huang, F. Y.; Cao, R. G.; Zhang, G. Q.; Jiao, S. H. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. 2020, 132, 3533–3538.
Jiang, C.; Jia, Q. Q.; Tang, M.; Fan, K.; Chen, Y.; Sun, M. X.; Xu, S. F.; Wu, Y. C.; Zhang, C. Y.; Ma, J. et al. Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes. Angew. Chem., Int. Ed. 2021, 60, 10871–10879.
Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.
Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 2018, 9, 3729.
Deng, K. R.; Qin, J. X.; Wang, S. J.; Ren, S.; Han, D. M.; Xiao, M.; Meng, Y. Z. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte. Small 2018, 14, 1801420.
Cao, D. X.; Sun, X.; Li, Q.; Natan, A.; Xiang, P. Y.; Zhu, H. L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94.
Jiang, C.; Gu, Y. M.; Tang, M.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L.; Hu, W. P. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS Appl. Mater. Interfaces 2020, 12, 10461–10470.
Tantratian, K.; Cao, D. X.; Abdelaziz, A.; Sun, X.; Sheng, J. Z.; Natan, A.; Chen, L.; Zhu, H. L. Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays. Adv. Energy Mater. 2020, 10, 1902819.
Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.
Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F.; He, Y. B. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J. Mater. Chem. A 2019, 7, 15871–15879.
Shen, L.; Shi, P. R.; Hao, X. G.; Zhao, Q.; Ma, J. B.; He, Y. B.; Kang, F. Y. Progress on lithium dendrite suppression strategies from the interior to exterior by hierarchical structure designs. Small 2020, 16, 2000699.
Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.
Ma, Y.; Wei, L.; Gu, Y. T.; Hu, J. P.; Chen, Y. J.; Qi, P. W.; Zhao, X. H.; Peng, Y.; Deng, Z.; Liu, Z. F. High-performance Li-O2 batteries based on all-graphene backbone. Adv. Funct. Mater. 2020, 30, 2007218.
Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C. X.; Zhang, J.; Chen, S. H.; Xu, L.; Yuan, H.; Zhang, Q. Fast charging lithium batteries: Recent progress and future prospects. Small 2019, 15, 1805389.
Sand, H. J. S. III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 1, 45–79.
Xu, T. H.; Gao, P.; Li, P. R.; Xia, K.; Han, N.; Deng, J.; Li, Y. G.; Lu, J. Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying. Adv. Energy Mater. 2020, 10, 1902343.
Liu, S. S.; Ma, Y. L.; Zhou, Z. X.; Lou, S. F.; Huo, H.; Zuo, P. J.; Wang, J. J.; Du, C. Y.; Yin, G. P.; Gao, Y. Z. Inducing uniform lithium nucleation by integrated lithium-rich Li-in anode with lithiophilic 3D framework. Energy Storage Mater. 2020, 33, 423–431.
Kang, D.; Cai, Z. X.; Jin, Q. W.; Zhang, H. B. Bio-inspired composite films with integrative properties based on the self-assembly of gellan gum-graphene oxide crosslinked nanohybrid building blocks. Carbon 2015, 91, 445–457.
Cai, K. Q.; Zheng, M. X.; Xu, H.; Zhu, Y. J.; Zhang, L. T.; Zheng, B. D. Gellan gum/graphene oxide aerogels for methylene blue purification. Carbohydr. Polym. 2021, 257, 117624.
Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. 2018, 130, 15248–15253.
Zhai, P. B.; Liu, L. X.; Wei, Y.; Zuo, J. H.; Yang, Z. L.; Chen, Q.; Zhao, F. F.; Zhang, X. K.; Gong, Y. J. Self-healing nucleation seeds induced long-term dendrite-free lithium metal anode. Nano Lett. 2021, 21, 7715–7723.
Chen, D. D.; Liu, P.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Huang, S.; Meng, Y. Z. Covalent organic frameworks with low surface work function enabled stable lithium anode. Small 2021, 17, 2101496.
Zhou, Y.; Zhang, J. M.; Zhao, K.; Ma, Y.; Zhang, H. Z.; Song, D. W.; Shi, X. X.; Zhang, L. Q.; Ding, Y. A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes. Energy Storage Mater. 2021, 39, 403–411.
Yu, W.; Yang, J. L.; Li, J.; Zhang, K.; Xu, H. M.; Zhou, X.; Chen, W.; Loh, K. P. Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 2021, 33, 2102083.
Park, J. B.; Choi, C.; Yu, S.; Chung, K. Y.; Kim, D. W. Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 2021, 11, 2101544.
Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Sun, D. L.; Yu, X. B. Dendrite-free Li-metal anode enabled by dendritic structure. Adv. Funct. Mater. 2021, 31, 2009712.
Fang, Y. Z.; Zhang, Y.; Zhu, K.; Lian, R. Q.; Gao, Y.; Yin, J. L.; Ye, K.; Cheng, K.; Yan, J.; Wang, G. L. et al. Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019, 13, 14319–14328.
Lee, D.; Sun, S.; Kwon, J.; Park, H.; Jang, M.; Park, E.; Son, B.; Jung, Y.; Song, T.; Paik, U. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 2020, 32, 1905573.
Zhou, T.; Shen, J. D.; Wang, Z. S.; Liu, J.; Hu, R. Z.; Ouyang, L. Z.; Feng, Y. Z.; Liu, H.; Yu, Y.; Zhu, M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv. Funct. Mater. 2020, 30, 1909159.
Chen, T.; Meng, F. B.; Zhang, Z. W.; Liang, J. C.; Hu, Y.; Kong, W. H.; Zhang, X. L.; Jin, Z. Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy 2020, 76, 105068.
Liang, Z.; Yan, K.; Zhou, G. M.; Pei, A.; Zhao, J.; Sun, Y. M.; Xie, J.; Li, Y. B.; Shi, F. F.; Liu, Y. Y. et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Sci. Adv. 2019, 5, eaau5655.
Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.
Cao, Z. J.; Li, B.; Yang, S. B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium–copper–lithium arrays. Adv. Mater. 2019, 31, 1901310.
Nan, Y.; Li, S. M.; Han, C.; Yan, H. B.; Ma, Y. X.; Liu, J. H.; Yang, S. B.; Li, B. Interlamellar lithium-ion conductor reformed interface for high performance lithium metal anode. Adv. Funct. Mater. 2021, 31, 2102336.
Li, Z. Z.; Peng, M. Q.; Zhou, X. L.; Shin, K.; Tunmee, S.; Zhang, X. M.; Xie, C. D.; Saitoh, H.; Zheng, Y. P.; Zhou, Z. M. et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv. Mater. 2021, 33, 2100793.