Journal Home > Volume 16 , Issue 3

Sodium-ion batteries are considered as a promising low-cost alternative to commercial lithium-ion batteries. However, the harsh preparation conditions and unsatisfactory electrochemical performance of most sodium-ion batteries anode materials limit their commercial applications. Herein, we develop a new alloying/dealloying method for producing nano-scale tin from freezing point to room temperature. Due to the unique surface properties of tin particles, a tin/carbon composite with a compact structure is obtained. When coupled with a diglyme-based electrolyte, tin/carbon composite (contains 60 wt.% tin) exhibits a reversible capacity of 334.8 mAh·g−1 after 1,000 cycles at 500 mA·g−1. An as-prepared tin/carbon anode||high-load vanadium phosphate sodium full cell (N/P ratio: 1.07) shows a stable cycle life of 300 cycles at 1 A·g−1. The achievement of such an excellent performance can be ascribed to the carbon conductive network and robust solid electrolyte interphase film, which facilitates the fast transportation of electrons and Na ions. This work provides a new idea to prepare other alloyed anode materials for high-performance sodium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Compact Sn/C composite realizes long-life sodium-ion batteries

Show Author's information Mingdong TanShuanghui HanZhenbang LiHao CuiDanni Lei( )Chengxin Wang( )
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Sodium-ion batteries are considered as a promising low-cost alternative to commercial lithium-ion batteries. However, the harsh preparation conditions and unsatisfactory electrochemical performance of most sodium-ion batteries anode materials limit their commercial applications. Herein, we develop a new alloying/dealloying method for producing nano-scale tin from freezing point to room temperature. Due to the unique surface properties of tin particles, a tin/carbon composite with a compact structure is obtained. When coupled with a diglyme-based electrolyte, tin/carbon composite (contains 60 wt.% tin) exhibits a reversible capacity of 334.8 mAh·g−1 after 1,000 cycles at 500 mA·g−1. An as-prepared tin/carbon anode||high-load vanadium phosphate sodium full cell (N/P ratio: 1.07) shows a stable cycle life of 300 cycles at 1 A·g−1. The achievement of such an excellent performance can be ascribed to the carbon conductive network and robust solid electrolyte interphase film, which facilitates the fast transportation of electrons and Na ions. This work provides a new idea to prepare other alloyed anode materials for high-performance sodium-ion batteries.

Keywords: sodium-ion batteries, alloying/dealloying method, compact tin/carbon composite

References(72)

[1]

Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622.

[2]

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

[3]

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

[4]

Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 2018, 8, 1703137.

[5]

Lei, D. N.; He, Y. B.; Huang, H. J.; Yuan, Y. F.; Zhong, G. M.; Zhao, Q.; Hao, X. G.; Zhang, D. F.; Lai, C.; Zhang, S. W. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 2019, 10, 4244.

[6]

Gu, E.; Liu, S. H.; Zhang, Z. Z.; Fang, Y. Y.; Zhou, X. S.; Bao, J. C. An efficient sodium-ion battery consisting of reduced graphene oxide bonded Na3V2(PO4)3 in a composite carbon network. J. Alloys Compd. 2018, 767, 131–140.

[7]

Tan, H. T.; Chen, D.; Rui, X. H.; Yu, Y. Peering into alloy anodes for sodium-ion batteries: Current trends, challenges, and opportunities. Adv. Funct. Mater. 2019, 29, 1808745.

[8]

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

[9]

Rui, X. H.; Zhang, X. H.; Xu, S. T.; Tan, H. T.; Jiang, Y.; Gan, L. Y.; Feng, Y. Z.; Li, C. C.; Yu, Y. A low-temperature sodium-ion full battery: Superb kinetics and cycling stability. Adv. Funct. Mater. 2021, 31, 2009458.

[10]

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

[11]

Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B.; Xie, Q. S.; Peng, D. L. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020, 13, 2136–2142.

[12]

Zhang, Y.; Xia, X. H.; Liu, B.; Deng, S. J.; Xie, D.; Liu, Q.; Wang, Y. D.; Wu, J. B.; Wang, X. L.; Tu, J. P. Multiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803342.

[13]

Zhou, C. L.; Wang, D. K.; Li, A.; Pan, E. Z.; Liu, H. Y.; Chen, X. H.; Jia, M. Q.; Song, H. H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem. Eng. J. 2020, 380, 122457.

[14]

Geng, X. M.; Jiao, Y. C.; Han, Y.; Mukhopadhyay, A.; Yang, L.; Zhu, H. L. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702998.

[15]

Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614–4626.

[16]

Li, C. C.; Wang, B.; Chen, D.; Gan, L. Y.; Feng, Y. Z.; Zhang, Y. F.; Yang, Y.; Geng, H. B.; Rui, X. H.; Yu, Y. Topotactic transformation synthesis of 2D ultrathin GeS2 nanosheets toward high-rate and high-energy-density sodium-ion half/full batteries. ACS Nano 2020, 14, 531–540.

[17]

Xia, G. L.; Gao, Q. L.; Sun, D. L.; Yu, X. B. Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes. Small 2017, 13, 1701561.

[18]

Feng, J. Z.; Dong, Y. F.; Yan, Y. C.; Zhao, W. N.; Yang, T. T.; Zheng, J. T.; Li, Z. T.; Wu, M. B. Extended lattice space of TiO2 hollow nanocubes for improved sodium storage. Chem. Eng. J. 2019, 373, 565–571.

[19]

Li, Q. F.; Yang, D.; Chen, H. L.; Lv, X.; Jiang, Y.; Feng, Y. Z.; Rui, X. H.; Yu, Y. Advances in metal phosphides for sodium-ion batteries. SusMat. 2021, 1, 359–392.

[20]

Ying, H. J.; Han, W. Q. Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 2017, 4, 1700298.

[21]

Wang, X. Y.; Fan, L.; Gong, D. C.; Zhu, J.; Zhang, Q. F.; Lu, B. G. Core–shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 2016, 26, 1104–1111.

[22]

Dong, S. H.; Li, C. X.; Li, Z. Q.; Zhang, L. Y.; Yin, L. W. Mesoporous hollow Sb/ZnS@C core–shell heterostructures as anodes for high-performance sodium-ion batteries. Small 2018, 14, 1704517.

[23]

Xu, X.; Si, L.; Zhou, X. S.; Tu, F. Z.; Zhu, X. S.; Bao, J. C. Chemical bonding between antimony and ionic liquid-derived nitrogen-doped carbon for sodium-ion battery anode. J. Power Sources 2017, 349, 37–44.

[24]

Zhang, Z. Z.; Du, Y. C.; Wang, Q. C.; Xu, J. Y.; Zhou, Y. N.; Bao, J. C.; Shen, J.; Zhou, X. S. A yolk–shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 17504–17510.

[25]

Palaniselvam, T.; Goktas, M.; Anothumakkool, B.; Sun, Y. N.; Schmuch, R.; Zhao, L.; Han, B. H.; Winter, M.; Adelhelm, P. Sodium storage and electrode dynamics of tin-carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1900790.

[26]

Pan, L.; Huang, H. J.; Zhong, M.; Niederberger, M. Hydrogel-derived foams of nitrogen-doped carbon loaded with Sn nanodots for high-mass-loading Na-ion storage. Energy Stor. Mater. 2019, 16, 519–526.

[27]

Zhao, X. X.; Yang, Q.; Quan, Z. W. Tin-based nanomaterials: Colloidal synthesis and battery applications. Chem. Commun. 2019, 55, 8683–8694.

[28]

Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 3408–3413.

[29]

Liu, Z.; Zhang, S.; Qiu, Z. P.; Huangfu, C.; Wang, L.; Wei, T.; Fan, Z. J. Tin nanodots derived from Sn2+/graphene quantum dot complex as pillars into graphene blocks for ultrafast and ultrastable sodium-ion storage. Small 2020, 16, 2003557.

[30]

Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.

[31]

Ruan, B. Y.; Guo, H. P.; Hou, Y. Y.; Liu, Q. N.; Deng, Y. F.; Chen, G. H.; Chou, S. L.; Liu, H. K.; Wang, J. Z. Carbon-encapsulated Sn@N-doped carbon nanotubes as anode materials for application in SIBs. ACS Appl. Mater. Interfaces 2017, 9, 37682–37693.

[32]

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature. 2001, 410, 450–453.

[33]

Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 2004, 16, 1897–1900.

[34]

Shin, H. C.; Dong, J.; Liu, M. Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 2003, 15, 1610–1614.

[35]

Pugh, D. V.; Dursun, A.; Corcoran, S. G. Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 2003, 18, 216–221.

[36]

Xu, C. X.; Li, Y. Y.; Tian, F.; Ding, Y. Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. Chem. Phys. Chem. 2010, 11, 3320–3328.

[37]

Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J. Alloys Compd. 2009, 485, 583–587.

[38]

Chen, L. Y.; Yu, J. S.; Fujita, T.; Chen, M. W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 2009, 19, 1221–1226.

[39]

Hayes, J. R.; Hodge, A. M.; Biener, J.; Hamza, A. V.; Sieradzki, K. Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res. 2006, 21, 2611–2616.

[40]

Wada, T.; Setyawan, A. D.; Yubuta, K.; Kato, H. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt. Scr. Mater. 2011, 65, 532–535.

[41]

Kim, J. W.; Wada, T.; Kim, S. G.; Kato, H. Sub-micron porous niobium solid electrolytic capacitor prepared by dealloying in a metallic melt. Mater. Lett. 2014, 116, 223–226.

[42]

McCue, I.; Ryan, S.; Hemker, K.; Xu, X. D.; Li, N.; Chen, M. W.; Erlebacher, J. Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying. Adv. Eng. Mater. 2016, 18, 46–50.

[43]

Wada, T.; Ichitsubo, T.; Yubuta, K.; Segawa, H.; Yoshida, H.; Kato, H. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett. 2014, 14, 4505–4510.

[44]

Xu, H. J.; Pang, S. J.; Jin, Y.; Zhang, T. General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid. Nano Res. 2016, 9, 2467–2477.

[45]

Niu, J. Z.; Yin, K. B.; Gao, H.; Song, M. J.; Ma, W. S.; Peng, Z. Q.; Zhang, Z. H. Composition- and size-modulated porous bismuth-tin biphase alloys as anodes for advanced magnesium ion batteries. Nanoscale 2019, 11, 15279–15288.

[46]

Gao, H.; Niu, J. Z.; Zhang, C.; Peng, Z. Q.; Zhang, Z. H. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018, 12, 3568–3577.

[47]

Lei, D. N.; Magasinski, A.; Berdichevsky, G.; Yushin, G. Transformation of bulk alloys to oxide nanowires. Science 2017, 355, 267–271.

[48]

Wu, Y.; Lei, D.; Wang, C. The formation of LiAl5O8 nanowires from bulk Li-Al alloy enables dendrite-free Li metal batteries. Mater. Today Phys. 2021, 18, 100395.

[49]

Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950–1958.

[50]

Zhou, X. S.; Bao, J. C.; Dai, Z. H.; Guo, Y. G. Tin nanoparticles impregnated in nitrogen-doped graphene for lithium-ion battery anodes. J. Phys. Chem. C 2013, 117, 25367–25373.

[51]

Ying, H. J.; Zhang, S. L.; Meng, Z.; Sun, Z. X.; Han, W. Q. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A. 2017, 5, 8334–8342.

[52]

Liu, C.; Qian, K.; Lei, D. N.; Li, B. H.; Kang, F. Y.; He, Y. B. Deterioration mechanism of LiNi0.8Co0.15Al0.05O2/graphite–SiOx power batteries under high temperature and discharge cycling conditions. J. Mater. Chem. A 2018, 6, 65–72.

[53]

Liu, K.; Wang, J. A.; Zheng, H. F.; Guo, S. H.; Wang, X. F.; Man, J. Z.; Wang, X. Y.; Sun, J. C. A sustainable strategy for fabricating porous carbon supported Sn submicron spheres by self-generated Na2CO3 as templates for lithium-ion battery anode. Green Chem. 2021, 23, 6490–6500.

[54]

Wang, H. P.; He, J.; Liu, J. D.; Qi, S. H.; Wu, M. G.; Wen, J.; Chen, Y. A.; Feng, Y. Z.; Ma, J. M. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2002578.

[55]

Liu, Y. C.; Zhang, N.; Jiao, L. F.; Chen, J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 2015, 27, 6702–6707.

[56]

Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153–157.

[57]

Zhu, N.; Zhang, K.; Wu, F.; Bai, Y.; Wu, C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater. Adv. 2021, 2021, 9204217.

[58]

Dong, R. Q.; Zheng, L. M.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H. X.; Wu, C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, 2008810.

[59]

Zhang, B.; Rousse, G.; Foix, D.; Dugas, R.; Corte, D. A. D.; Tarascon, J. M. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv. Mater. 2016, 28, 9824–9830.

[60]

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

[61]

Zhang, Y. G.; Wang, Y. B.; Kong, D. Z.; Yang, Y.; Wang, Y. H.; Guo, Y.; Lu, Y.; Kim, J. K.; Luo, Y. S. In situ growth of Sn nanoparticles confined carbon-based TiO2/TiN composite with long-term cycling stability for sodium-ion batteries. Electrochim. Acta 2021, 367, 137450.

[62]

Klein, F.; Pinedo, R.; Hering, P.; Polity, A.; Janek, J.; Adelhelm, P. Reaction mechanism and surface film formation of conversion materials for lithium- and sodium-ion batteries: An XPS case study on sputtered copper oxide (CuO) thin film model electrodes. J. Phys. Chem. C 2016, 120, 1400–1414.

[63]

Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.

[64]

Huang, J. Q.; Guo, X. Y.; Du, X. Q.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 2019, 12, 1550–1557.

[65]

Zhang, Y. Y.; Zhu, X. Y.; Kai, D.; Jiang, Y. Z.; Yan, Q. Y.; Chen, B. L. Konjac glucomannan biopolymer as a multifunctional binder to build a solid permeable interface on Na3V2(PO4)3/C cathodes for high-performance sodium ion batteries. J. Mater. Chem. A 2021, 9, 9864–9874.

[66]

Kim, C.; Kim, H.; Sadan, M. K.; Jeon, M.; Cho, G.; Ahn, J.; Kim, K.; Cho, K.; Ahn, H. Development and evaluation of Sn foil anode for sodium-ion batteries. Small 2021, 17, 2102618.

[67]

Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014.

[68]

Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 2012, 159, A1801–A1805.

[69]

Palaniselvam, T.; Mukundan, C.; Hasa, I.; Santhosha, A. L.; Goktas, M.; Moon, H.; Ruttert, M.; Schmuch, R.; Pollok, K.; Langenhorst, F. et al. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv. Funct. Mater. 2020, 30, 2004798.

[70]

Choudhury, S.; Wei, S. Y.; Ozhabes, Y.; Gunceler, D.; Zachman, M. J.; Tu, Z. Y.; Shin, J. H.; Nath, P.; Agrawal, A.; Kourkoutis, L. F. et al. Designing solid–liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898.

[71]

Su, D. W.; Kretschmer, K.; Wang, G. X. Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: A case study of ZnS nanospheres. Adv. Energy Mater. 2016, 6, 1501785.

[72]

Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449–455.

File
12274_2022_4255_MOESM1_ESM.pdf (899.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 December 2021
Revised: 16 February 2022
Accepted: 19 February 2022
Published: 19 March 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51972351 and 51802361), Guangdong Basic and Applied Basic Research Foundation (No. 2019B151502045).

Return