Journal Home > Volume 15 , Issue 7

Halide perovskites have been extensively studied for use as light-emitting diodes (LEDs) in next-generation displays due to their beneficial characteristics, including their high color purity and wide color gamut. Halide perovskites can be categorized into four representative structures: three-dimensional (3D) bulk, two-dimensional (2D), quasi-two-dimensional (quasi-2D), and quantum dot (QD). Recently, excellent advances in the performance of perovskite LEDs (PeLEDs), especially those with quasi-2D and QD architectures, have been demonstrated with the incorporation of organic chain ligands. Ligands can both modify the structure of PeLEDs, such as forming multi-quantum wells in quasi-2D PeLEDs and essential passivation layers in QD PeLEDs, and also enhance their optical performance. The appropriate use of ligands in PeLEDs can thus lead to greater luminescence, current efficiency, power efficiency, and external quantum efficiency. In this review, the principal roles of ligands in quasi-2D and QD PeLEDs are systematically summarized. Furthermore, current limitations and future perspectives are discussed in detail.


menu
Abstract
Full text
Outline
About this article

Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review

Show Author's information Yurim Bae1Jun Ryu2Saemon Yoon2Dong-Won Kang1,2( )
School of Energy Systems Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
Department of Smart City, Chung-Ang University, Seoul 06974, Republic of Korea

Abstract

Halide perovskites have been extensively studied for use as light-emitting diodes (LEDs) in next-generation displays due to their beneficial characteristics, including their high color purity and wide color gamut. Halide perovskites can be categorized into four representative structures: three-dimensional (3D) bulk, two-dimensional (2D), quasi-two-dimensional (quasi-2D), and quantum dot (QD). Recently, excellent advances in the performance of perovskite LEDs (PeLEDs), especially those with quasi-2D and QD architectures, have been demonstrated with the incorporation of organic chain ligands. Ligands can both modify the structure of PeLEDs, such as forming multi-quantum wells in quasi-2D PeLEDs and essential passivation layers in QD PeLEDs, and also enhance their optical performance. The appropriate use of ligands in PeLEDs can thus lead to greater luminescence, current efficiency, power efficiency, and external quantum efficiency. In this review, the principal roles of ligands in quasi-2D and QD PeLEDs are systematically summarized. Furthermore, current limitations and future perspectives are discussed in detail.

Keywords: quasi-two-dimensional (quasi-2D), perovskites, quantum dot, ligands, light emitting diode

References(127)

1

Yang, K. Y.; Li, F. S.; Hu, H. L.; Guo, T. L.; Kim, T. W. Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy 2019, 65, 104029.

2

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

3

Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.

4

Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

5

Chu, Z. M.; Ye, Q. F.; Zhao, Y.; Ma, F.; Yin, Z. G.; Zhang, X. W.; You, J. B. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 2021, 33, 2007169.

6
Wan, Q.; Zheng, W. L.; Zoub, C.; Carulli, F.; Zhang, C. Y.; Song, H. L.; Liu, M. M.; Zhang, Q. G.; Lin, L. Y.; Kong, L. et al. Highly efficient ultrathin light emitting diodes based on perovskite nanocrystals. 2021, arXiv: 2106.01924. arXiv.org e-Printarchive. https://doi.org/10.48550/arXiv.2106.01924 (accessed Month Day, Year).
7

Wang, H. L.; Dong, Z. J.; Liu, H. C.; Li, W. P.; Zhu, L. Q.; Chen, H. N. Roles of organic molecules in inorganic CsPbX3 perovskite solar cells. Adv. Energy Mater. 2021, 11, 2002940.

8

Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

9

Zheng, X. J.; Wu, C. C.; Jha, S. K.; Li, Z.; Zhu, K.; Priya, S. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 2016, 1, 1014–1020.

10

Mao, L. L.; Guo, P. J.; Kepenekian, M.; Hadar, I.; Katan, C.; Even, J.; Schaller, R. D.; Stoumpos, C. C.; Kanatzidis, M. G. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J. Am. Chem. Soc. 2018, 140, 13078–13088.

11

Park, M. H.; Jeong, S. H.; Seo, H. K.; Wolf, C.; Kim, Y. H.; Kim, H.; Byun, J.; Kim, J. S.; Cho, H.; Lee, T. W. Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy 2017, 42, 157–165.

12

Han, T. H.; Lee, J. W.; Choi, Y. J.; Choi, C.; Tan, S.; Lee, S. J.; Zhao, Y. P.; Huang, Y.; Kim, D.; Yang, Y. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Adv. Mater. 2020, 32, 1905674.

13

Fu, Y. P.; Hautzinger, M. P.; Luo, Z. Y.; Wang, F. F.; Pan, D. X.; Aristov, M. M.; Guzei, I. A.; Pan, A. L.; Zhu, X. Y.; Jin, S. Incorporating large A cations into lead iodide perovskite cages: Relaxed goldschmidt tolerance factor and impact on exciton–phonon interaction. ACS Cent. Sci. 2019, 5, 1377–1386.

14

Ren, Z. W.; Wang, K.; Sun, X. W.; Choy, W. C. H. Strategies toward efficient blue perovskite light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2100516.

15

Kim, Y. H.; Wolf, C.; Kim, Y. T.; Cho, H.; Kwon, W.; Do, S.; Sadhanala, A.; Park, C. G.; Rhee, S. W.; Im, S. H. et al. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size. ACS Nano 2017, 11, 6586–6593.

16
Johnsson, M.; Lemmens, P. Crystallography and chemistry of perovskites. 2021, arXiv: cond-mat/0506606. arXiv.org e-Print archive. https://doi.org/10.48550/arXiv.cond-mat/0506606 (accessed Month Day, Year).
17

Li, C.; Lu, X. G.; Ding, W. Z.; Feng, L. M.; Gao, Y. H.; Guo, Z. M. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr., Sect. B 2008, 64, 702–707.

18
Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc., Dalton Trans. 2001, 1–12.
19

Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744.

20

Li, C. H.; Soh, K. C. K.; Wu, P. Formability of ABO3 perovskites. J. Alloys Compd. 2004, 372, 40–48.

21

Sun, Q. D.; Yin, W. J. Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 2017, 139, 14905–14908.

22

Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R. H.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693.

23

Tao, S. X.; Schmidt, I.; Brocks, G.; Jiang, J. K.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 2019, 10, 2560.

24

Li, W.; Wang, Z. M.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2017, 2, 16099.

25

Mittal, M.; Jana, A.; Sarkar, S.; Mahadevan, P.; Sapra, S. Size of the organic cation tunes the band gap of colloidal organolead bromide perovskite nanocrystals. J. Phys. Chem. Lett. 2016, 7, 3270–3277.

26

Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658.

27

Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; Cortadella, R. G.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521–6527.

28

Hu, H. W.; Salim, T.; Chen, B. B.; Lam, Y. M. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci. Rep. 2016, 6, 33546.

29

Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.

30

Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

31

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

32

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

33

Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

34

Lee, H. D.; Kim, H.; Cho, H.; Cha, W.; Hong, Y.; Kim, Y. H.; Sadhanala, A.; Venugopalan, V.; Kim, J. S.; Choi, J. W. et al. Efficient ruddlesden-popper perovskite light-emitting diodes with randomly oriented nanocrystals. Adv. Funct. Mater. 2019, 29, 1901225.

35

Quan, L. N.; Zhao, Y. B.; De Arquer, F. P. G.; Sabatini, R.; Walters, G.; Voznyy, O.; Comin, R.; Li, Y. Y.; Fan, J. Z.; Tan, H. R. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 2017, 17, 3701–3709.

36

Yang, X. L.; Zhang, X. W.; Deng, J. X.; Chu, Z. M.; Jiang, Q.; Meng, J. H.; Wang, P. Y.; Zhang, L. Q.; Yin, Z. G.; You, J. B. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.

37

Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115.

38

Lee, S.; Kim, D. B.; Hamilton, I.; Daboczi, M.; Nam, Y. S.; Lee, B. R.; Zhao, B. D.; Jang, C. H.; Friend, R. H.; Kim, J. S. et al. Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv. Sci. 2018, 5, 1801350.

39

Wang, Z. B.; Wang, F. Z.; Sun, W. D.; Ni, R. H.; Hu, S. Q.; Liu, J. Y.; Zhang, B.; Alsaed, A.; Hayat, T.; Tan, Z. A. Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1804187.

40

Zhang, Q. P.; Tavakoli, M. M.; Gu, L. L.; Zhang, D. Q.; Tang, L.; Gao, Y.; Guo, J.; Lin, Y. J.; Leung, S. F.; Poddar, S. et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 2019, 10, 727.

41

Yang, G.; Liu, X. Y.; Sun, Y. Z.; Teng, C.; Wang, Y.; Zhang, S. D.; Zhou, H. Improved current efficiency of quasi-2D multi-cation perovskite light-emitting diodes: The effect of Cs and K. Nanoscale 2020, 12, 1571–1579.

42

Qin, C. J.; Matsushima, T.; Potscavage, W. J. Jr.; Sandanayaka, A. S. D.; Leyden, M. R.; Bencheikh, F.; Goushi, K.; Mathevet, F.; Heinrich, B.; Yumoto, G. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photonics 2020, 14, 70–75.

43

Bi, W. T.; Cui, Q. H.; Jia, P. C.; Huang, X.; Zhong, Y. G.; Wu, D. D.; Tang, Y.; Shen, S.; Hu, Y. F.; Lou, Z. D. et al. Efficient quasi-two-dimensional perovskite light-emitting diodes with improved multiple quantum well structure. ACS Appl. Mater. Interfaces 2020, 12, 1721–1727.

44

Yang, X. L.; Chu, Z. M.; Meng, J. H.; Yin, Z. G.; Zhang, X. W.; Deng, J. X.; You, J. B. Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite-based light-emitting diodes. J. Phys. Chem. Lett. 2019, 10, 2892–2897.

45

Zhang, X.; Munir, R.; Xu, Z.; Liu, Y. C.; Tsai, H.; Nie, W. Y.; Li, J. B.; Niu, T. Q.; Smilgies, D. M.; Kanatzidis, M. G. et al. Phase transition control for high performance ruddlesden-popper perovskite solar cells. Adv. Mater. 2018, 30, 1707166.

46

Wang, J. F.; Luo, S. Q.; Lin, Y.; Chen, Y. F.; Deng, Y. H.; Li, Z. M.; Meng, K.; Chen, G.; Huang, T. T.; Xiao, S. et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 2020, 11, 582.

47

Liu, N.; Liu, P. F.; Ren, H. X.; Xie, H. P.; Zhou, N.; Gao, Y. L.; Li, Y. J.; Zhou, H. P.; Bai, Y.; Chen, Q. Probing phase distribution in 2D perovskites for efficient device design. ACS Appl. Mater. Interfaces 2020, 12, 3127–3133.

48

Weidman, M. C.; Goodman, A. J.; Tisdale, W. A. Colloidal halide perovskite nanoplatelets: An exciting new class of semiconductor nanomaterials. Chem. Mater. 2017, 29, 5019–5030.

49

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

50

Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Espallargas, G. M.; Bolink, H. J.; Galian, R. E. Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.

51

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

52

Chiba, T.; Kido, J. Lead halide perovskite quantum dots for light-emitting devices. J. Mater. Chem. C 2018, 6, 11868–11877.

53

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

54

Gonzalez-Carrero, S.; Galian, R. E.; Pérez-Prieto, J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J. Mater. Chem. A 2015, 3, 9187–9193.

55

Zhao, Y. S.; Fu, H. B.; Peng, A. D.; Ma, Y.; Xiao, D. B.; Yao, J. N. Low-dimensional nanomaterials based on small organic molecules: Preparation and optoelectronic properties. Adv. Mater. 2008, 20, 2859–2876.

56

Niu, Y. W.; Zhang, F.; Bai, Z. L.; Dong, Y. P.; Yang, J.; Liu, R. B.; Zou, B. S.; Li, J. B.; Zhong, H. Z. Aggregation-induced emission features of organometal halide perovskites and their fluorescence probe applications. Adv. Opt. Mater. 2015, 3, 112–119.

57

Zhu, L.; Liu, D. W.; Wang, J. P.; Wang, N. N. Large organic cations in quasi-2D perovskites for high-performance light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 8502–8510.

58

Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676–678.

59

Liang, D.; Peng, Y. L.; Fu, Y. P.; Shearer, M. J.; Zhang, J. J.; Zhai, J. Y.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 2016, 10, 6897–6904.

60

Li, R. Z.; Yi, C.; Ge, R.; Zou, W.; Cheng, L.; Wang, N. N.; Wang, J. P.; Huang, W. Room-temperature electroluminescence from two-dimensional lead halide perovskites. Appl. Phys. Lett. 2016, 109, 151101.

61

Qin, X.; Dong, H. L.; Hu, W. P. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Sci. China Mater. 2015, 58, 186–191.

62

Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

63

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

64

Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y. C.; Wang, M. C.; Nedelcu, G.; Kim, Y.; Lin, S. C.; Santos, E. J. G. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 2016, 10, 9720–9729.

65

Chin, X. Y.; Perumal, A.; Bruno, A.; Yantara, N.; Veldhuis, S. A.; Martínez-Sarti, L.; Chandran, B.; Chirvony, V.; Lo, A. S. Z.; So, J. et al. Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energy Environ. Sci. 2018, 11, 1770–1778.

66

Ban, M. Y.; Zou, Y. T.; Rivett, J. P. H.; Yang, Y. G.; Thomas, T. H.; Tan, Y. S.; Song, T.; Gao, X. Y.; Credgington, D.; Deschler, F. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 2018, 9, 3892.

67

Cheng, L. P.; Huang, J. S.; Shen, Y.; Li, G. P.; Liu, X. K.; Li, W.; Wang, Y. H.; Li, Y. Q.; Jiang, Y.; Gao, F. et al. Efficient CsPbBr3 perovskite light-emitting diodes enabled by synergetic morphology control. Adv. Opt. Mater. 2019, 7, 1801534.

68

Zhao, B. D.; Bai, S.; Kim, V.; Lamboll, R.; Shivanna, R.; Auras, F.; Richter, J. M.; Yang, L.; Dai, L. J.; Alsari, M. et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 2018, 12, 783–789.

69

Sun, C. J.; Jiang, Y. Z.; Cui, M. H.; Qiao, L.; Wei, J. L.; Huang, Y. M.; Zhang, L.; He, T. W.; Li, S. S.; Hsu, H. Y. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 2207.

70

Tsai, H.; Liu, C. M.; Kinigstein, E.; Li, M. X.; Tretiak, S.; Cotlet, M.; Ma, X. D.; Zhang, X. Y.; Nie, W. Y. Critical role of organic spacers for bright 2D layered perovskites light-emitting diodes. Adv. Sci. 2020, 7, 1903202.

71

Meng, F. Y.; Liu, X. Y.; Chen, Y. X.; Cai, X. Y.; Li, M. K.; Shi, T. T.; Chen, Z. M.; Chen, D. C.; Yip, H. L.; Ramanan, C. et al. Co-interlayer engineering toward efficient green quasi-two-dimensional perovskite light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1910167.

72

Zeng, S. Y.; Shi, S. S.; Wang, S. R.; Xiao, Y. Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. J. Mater. Chem. C 2020, 8, 1319–1325.

73

Kim, S.; Bae, H. J.; Park, S.; Kim, W.; Kim, J.; Kim, J. S.; Jung, Y.; Sul, S.; Ihn, S. G.; Noh, C. et al. Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers. Nat. Commun. 2018, 9, 1211.

74

Wang, F. Z.; Wang, Z. Y.; Sun, W. D.; Wang, Z. B.; Bai, Y. M.; Hayat, T.; Alsaedi, A.; Tan, Z. A. High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-ligand strategy. Small 2020, 16, 2002940.

75

Chu, Z. M.; Zhao, Y.; Ma, F.; Zhang, C. X.; Deng, H. X.; Gao, F.; Ye, Q. F.; Meng, J. H.; Yin, Z. G.; Zhang, X. W. et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat. Commun. 2020, 11, 4165.

76

Tian, Y.; Qian, X. Y.; Qin, C. C.; Cui, M. H.; Li, Y. Q.; Ye, Y. C.; Wang, J. K.; Wang, W. J.; Tang, J. X. Modulating low-dimensional domains of self-assembling quasi-2D perovskites for efficient and spectra-stable blue light-emitting diodes. Chem. Eng. J. 2021, 415, 129088.

77

Ren, Z. W.; Yu, J. H.; Qin, Z. T.; Wang, J.; Sun, J. Y.; Chan, C. C. S.; Ding, S. H.; Wang, K.; Chen, R.; Wong, K. S. et al. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 2021, 33, 2005570.

78

Yin, W. X.; Li, M. K.; Dong, W.; Luo, Z.; Li, Y. X.; Qian, J. Y.; Zhang, J. Q.; Zhang, W.; Zhang, Y.; Kershaw, S. V. et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 2021, 6, 477–484.

79

Jin, Y.; Wang, Z. K.; Yuan, S.; Wang, Q.; Qin, C. C.; Wang, K. L.; Dong, C.; Li, M.; Liu, Y. F.; Liao, L. S. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1908339.

80

Yuan, S.; Wang, Z. K.; Xiao, L. X.; Zhang, C. F.; Yang, S. Y.; Chen, B. B.; Ge, H. T.; Tian, Q. S.; Jin, Y.; Liao, L. S. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 2019, 31, 1904319.

81

Shang, Y. Q.; Liao, Y.; Wei, Q.; Wang, Z. Y.; Xiang, B.; Ke, Y. Q.; Liu, W. M.; Ning, Z. J. Highly stable hybrid perovskite light-emitting diodes based on Dion–Jacobson structure. Sci. Adv. 2019, 5, eaaw8072.

82

Ahmad, S.; Fu, P.; Yu, S. W.; Yang, Q.; Liu, X.; Wang, X. C.; Wang, X. L.; Guo, X.; Li, C. Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 2019, 3, 794–806.

83

Cheng, T.; Tumen-Ulzii, G.; Klotz, D.; Watanabe, S.; Matsushima, T.; Adachi, C. Ion migration-induced degradation and efficiency roll-off in quasi-2D perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 33004–33013.

84

Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316.

85

Ge, C. Y.; Zhai, W. H.; Tian, C.; Zhao, S. Q.; Guo, T.; Sun, S. R.; Chen, W. X.; Ran, G. Z. Centimeter-scale 2D perovskite (PEA)2PbBr4 single crystal plates grown by a seeded solution method for photodetectors. RSC Adv. 2019, 9, 16779–16783.

86

Jodlowski, A. D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; De Miguel, G.; Nazeeruddin, M. K. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2017, 2, 972–979.

87

Wang, Z. B.; Wang, F. Z.; Zhao, B.; Qu, S. N.; Hayat, T.; Alsaedi, A.; Sui, L. Z.; Yuan, K. J.; Zhang, J. Q.; Wei, Z. X. et al. Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy. J. Phys. Chem. Lett. 2020, 11, 1120–1127.

88

Wang, Y.; Zou, R. M.; Chang, J.; Fu, Z. W.; Cao, Y.; Zhang, L. D.; Wei, Y. Q.; Kong, D. C.; Zou, W.; Wen, K. C. et al. Tin-based multiple quantum well perovskites for light-emitting diodes with improved stability. J. Phys. Chem. Lett. 2019, 10, 453–459.

89

Giovanni, D.; Righetto, M.; Zhang, Q. N.; Lim, J. W. M.; Ramesh, S.; Sum, T. C. Origins of the long-range exciton diffusion in perovskite nanocrystal films: Photon recycling vs. exciton hopping. Light:Sci. Appl. 2021, 10, 2.

90

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

91

Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei, Q. B.; Zhong, H. Z. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.

92

Yan, D. D.; Shi, T. C.; Zang, Z. G.; Zhao, S. Y.; Du, J.; Leng, Y. X. Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere. Chem. Eng. J. 2020, 401, 126066.

93

Ren, J. J.; Li, T. R.; Zhou, X. P.; Dong, X.; Shorokhov, A. V.; Semenov, M. B.; Krevchik, V. D.; Wang, Y. H. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem. Eng. J. 2019, 358, 30–39.

94

Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

95

Le, T. H.; Kim, S.; Chae, S.; Choi, Y.; Park, C. S.; Heo, E.; Lee, U.; Kim, H.; Kwon, O. S.; Im, W. B. et al. Zero reduction luminescence of aqueous-phase alloy core/shell quantum dots via rapid ambient-condition ligand exchange. J. Colloid Interface Sci. 2020, 564, 88–98.

96

Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.

97

Chiba, T.; Hoshi, K.; Pu, Y. J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 2017, 9, 18054–18060.

98

Song, J. Z.; Fang, T.; Li, J. H.; Xu, L. M.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16. 48%. Adv. Mater. 2018, 30, 1805409.

99

Yuan, S.; Wang, Z. K.; Zhuo, M. P.; Tian, Q. S.; Jin, Y.; Liao, L. S. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes. ACS Nano 2018, 12, 9541–9548.

100

Kim, B. S.; Hong, J.; Hou, B.; Cho, Y.; Sohn, J. I.; Cha, S.; Kim, J. M. Inorganic–ligand exchanging time effect in PbS quantum dot solar cell. Appl. Phys. Lett. 2016, 109, 063901.

101

Kim, Y. H.; Lee, G. H.; Kim, Y. T.; Wolf, C.; Yun, H. J.; Kwon, W.; Park, C. G.; Lee, T. W. High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy 2017, 38, 51–58.

102

Li, G. P.; Huang, J. S.; Zhu, H. W.; Li, Y. Q.; Tang, J. X.; Jiang, Y. Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 2018, 30, 6099–6107.

103

Zhao, L. F.; Yeh, Y. W.; Tran, N. L.; Wu, F.; Xiao, Z. G.; Kerner, R. A.; Lin, Y. L.; Scholes, G. D.; Yao, N.; Rand, B. P. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano 2017, 11, 3957–3964.

104

Kumar, S.; Jagielski, J.; Marcato, T.; Solari, S. F.; Shih, C. J. Understanding the ligand effects on photophysical, optical, and electroluminescent characteristics of hybrid lead halide perovskite nanocrystal solids. J. Phys. Chem. Lett. 2019, 10, 7560–7567.

105

Park, J. H.; Lee, A. Y.; Yu, J. C.; Nam, Y. S.; Choi, Y.; Park, J.; Song, M. H. Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes. ACS Appl. Mater. Interfaces 2019, 11, 8428–8435.

106

Peng, K. H.; Yang, S. H.; Wu, Z. Y.; Hsu, H. C. Synthesis of red cesium lead bromoiodide nanocrystals chelating phenylated phosphine ligands with enhanced stability. ACS Omega 2021, 6, 10437–10446.

107

Vickers, E. T.; Enlow, E. E.; Delmas, W. G.; DiBenedetto, A. C.; Chowdhury, A. H.; Bahrami, B.; Dreskin, B. W.; Graham, T. A.; Hernandez, I. N.; Carter, S. A. et al. Enhancing charge carrier delocalization in perovskite quantum dot solids with energetically aligned conjugated capping ligands. ACS Energy Lett. 2020, 5, 817–825.

108

Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBrxI3−x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.

109

Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77.

110

Lu, M.; Guo, J.; Sun, S. Q.; Lu, P.; Zhang, X. Y.; Shi, Z. F.; Yu, W. W.; Zhang, Y. Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure. Chem. Eng. J. 2021, 404, 126563.

111

Zhang, J. B.; Yin, C. Y.; Yang, F.; Yao, Y.; Yuan, F. L.; Chen, H. T.; Wang, R. W.; Bai, S.; Tu, G. L.; Hou, L. T. Highly luminescent and stable CsPbI3 perovskite nanocrystals with sodium dodecyl sulfate ligand passivation for red-light-emitting diodes. J. Phys. Chem. Lett. 2021, 12, 2437–2443.

112

Xu, L. M.; Li, J. H.; Cai, B.; Song, J. Z.; Zhang, F. J.; Fang, T.; Zeng, H. B. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 2020, 11, 3902.

113

Yan, D. D.; Zhao, S. Y.; Zhang, Y. B.; Wang, H. X.; Zang, Z. G. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron. Adv. 2025, 5, 200075.

114

He, S. W.; Kumar, N.; Lee, H. B.; Ko, K. J.; Jung, Y. J.; Kim, J. I.; Bae, S.; Lee, J. H.; Kang, J. W. Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chem. Eng. J. 2021, 425, 130678.

115

Zhang, Y.; Li, G. S.; She, C. K.; Liu, S. H.; Yue, F. Y.; Jing, C. B.; Cheng, Y.; Chu, J. H. Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white light-emitting diodes. Nano Res. 2021, 14, 2770–2775.

116

Shin, Y. S.; Yoon, Y. J.; Lee, K. T.; Jeong, J.; Park, S. Y.; Kim, G. H.; Kim, J. Y. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 23401–23409.

117

Zhao, H. F.; Chen, H. T.; Bai, S.; Kuang, C. Y.; Luo, X. Y.; Teng, P. P.; Yin, C. Y.; Zeng, P.; Hou, L. T.; Yang, Y. et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 2021, 6, 2395–2403.

118

An, H. J.; Kim, Y. C.; Kim, D. H.; Myoung, J. M. High-performance green light-emitting diodes based on MAPbBr3 with π-conjugated ligand. ACS Appl. Mater. Interfaces 2020, 12, 16726–16735.

119

Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.

120

Lee, H.; Jeong, J. W.; So, M. G.; Jung, G. Y.; Lee, C. L. Design of chemically stable organic perovskite quantum dots for micropatterned light-emitting diodes through kinetic control of a cross-linkable ligand system. Adv. Mater. 2021, 33, 2007855.

121

Ko, J.; Ma, K.; Joung, J. F.; Park, S.; Bang, J. Ligand-assisted direct photolithography of perovskite nanocrystals encapsulated with multifunctional polymer ligands for stable, full-colored, high-resolution displays. Nano Lett. 2021, 21, 2288–2295.

122

Wei, Y.; Li, X. F.; Chen, Y. Q.; Cheng, Z. Y.; Xiao, H.; Li, X. K.; Ding, J. Q.; Lin, J. In situ light-initiated ligands cross-linking enables efficient all-solution-processed perovskite light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 1154–1161.

123

Byun, J.; Satheeshkumar, C.; Lee, G. Y.; Oh, J.; Jung, D. H.; Seo, M.; Kim, S. O. Air-stable perovskite nanostructures with dimensional tunability by polymerizable structure-directing ligands. ACS Appl. Mater. Interfaces 2020, 12, 31770–31775.

124

Kim, Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.

125

Wang, Q.; Ren, J.; Peng, X. F.; Ji, X. X.; Yang, X. H. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl. Mater. Interfaces 2017, 9, 29901–29906.

126

Protesescu, L.; Yakunin, S.; Kumar, S.; Bär, J.; Bertolotti, F.; Masciocchi, N.; Guagliardi, A.; Grotevent, M.; Shorubalko, I.; Bodnarchuk, M. I. et al. Dismantling the “red wall” of colloidal perovskites: Highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 2017, 11, 3119–3134.

127

Akkerman, Q. A.; Manna, L. What defines a halide perovskite? ACS Energy Lett. 2020, 5, 604–610.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 October 2021
Revised: 28 January 2022
Accepted: 20 February 2022
Published: 02 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A2C4002045 and 2021R1A4A2001687).

Return