Journal Home > Volume 15 , Issue 7

Bulk synthesis of single-walled carbon nanotubes (SWNTs) using solid catalyst has been challenging, despite of recent breakthrough in the chirality-specific growth on the flat substrate surface. In this work, we propose a porous magnesia support rhenium catalyst for bulk synthesis of SWNTs. It is found that the well-dispersed catalyst with a high melting point and the optimal chemical vapor deposition reaction conditions account for the growth of SWNTs. Detailed characterizations reveal the produced SWNTs are dominant in (n, n − 1) and (n, n − 2) species. Furthermore, by using a multicolumn chromatography post-growth separation method, SWNTs with three defined diameter ranges were obtained. This work guides the design of porous oxide supported catalyst for bulk synthesis and diameter-dependent sorting of SWNTs, which will ultimately help harness the extraordinary properties of SWNTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bulk growth and separation of single-walled carbon nanotubes from rhenium catalyst

Show Author's information Chen Ma1,§Yumin Liu2,§Lili Zhang3Liu Qian4Yiming Zhao3Ying Tian5Qianru Wu1Dong Li1Nan Zhao1Xueting Zhang1Liantao Xin1Huaping Liu2( )Pengxiang Hou3Chang Liu3Maoshuai He1( )Jin Zhang4( )
State Key Laboratory of Eco-Chemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
School of Science, Dalian Maritime University, Dalian 116026, China

§ Chen Ma and Yumin Liu contributed equally to this work.

Abstract

Bulk synthesis of single-walled carbon nanotubes (SWNTs) using solid catalyst has been challenging, despite of recent breakthrough in the chirality-specific growth on the flat substrate surface. In this work, we propose a porous magnesia support rhenium catalyst for bulk synthesis of SWNTs. It is found that the well-dispersed catalyst with a high melting point and the optimal chemical vapor deposition reaction conditions account for the growth of SWNTs. Detailed characterizations reveal the produced SWNTs are dominant in (n, n − 1) and (n, n − 2) species. Furthermore, by using a multicolumn chromatography post-growth separation method, SWNTs with three defined diameter ranges were obtained. This work guides the design of porous oxide supported catalyst for bulk synthesis and diameter-dependent sorting of SWNTs, which will ultimately help harness the extraordinary properties of SWNTs.

Keywords: single-walled carbon nanotube, rhenium catalyst, bulk growth, gel chromatography, diameter separation

References(59)

1

He, M. S.; Zhang, S. C.; Zhang, J. Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications. Chem. Rev. 2020, 120, 12592–12684.

2

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

3

Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

4

Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

5

Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

6

Sanchez-Valencia, J. R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64.

7

He, M. S.; Wang, X.; Zhang, S. C.; Jiang, H.; Cavalca, F.; Cui, H. Z.; Wagner, J. B.; Hansen, T. W.; Kauppinen, E.; Zhang, J. et al. Growth kinetics of single-walled carbon nanotubes with a (2n, n) chirality selection. Sci. Adv. 2019, 5, eaav9668.

8

He, M. S.; Zhang, S. C.; Wu, Q. R.; Xue, H.; Xin, B. W.; Wang, D.; Zhang, J. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: Past success and future opportunity. Adv. Mater. 2019, 31, 1800805.

9

Wang, H.; Yuan, Y.; Wei, L.; Goh, K.; Yu, D. S.; Chen, Y. Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 2015, 81, 1–19.

10

An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.

11

Han, S.; Liu, X L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.

12

Takagi, D.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from diamond. J. Am. Chem. Soc. 2009, 131, 6922–6923.

13

Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006, 6, 2642–2645.

14

Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

15

Xue, H.; Xin, L. T.; Xu, Z. W.; Bai, R. Q.; Wu, Q. R.; Xin, B. W.; Zhang, X. Y.; Cui, H. Z.; Chen, F. S.; He, M. S. Iridium-catalyzed growth of single-walled carbon nanotubes with a bicentric diameter distribution. Mater. Chem. Front. 2019, 3, 1882–1887.

16

Liu, B. L.; Ren, W. C.; Gao, L. B.; Li, S. S.; Pei, S. F.; Liu, C.; Jiang, C. B.; Cheng, H. M. Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.

17

Zhang, X.; Graves, B.; De Volder, M.; Yang, W. M.; Johnson, T.; Wen, B.; Su, W.; Nishida, R.; Xie, S. S.; Boies, A. High-precision solid catalysts for investigation of carbon nanotube synthesis and structure. Sci. Adv. 2020, 6, eabb6010.

18

Qian, L.; Xie, Y.; Yu, Y.; Wang, S. S.; Zhang, S. C.; Zhang, J. Growth of single-walled carbon nanotubes with controlled structure: Floating carbide solid catalysts. Angew. Chem., Int. Ed. 2020, 59, 10884–10887.

19

Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.

20

Li, X. L.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770–15771.

21

Maruyama, S.; Miyauchi, Y.; Murakami, Y.; Chiashi, S. Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New J. Phys. 2003, 5, 149.

22

He, M. S.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Sainio, J.; Rikkinen, E.; Jiang, H.; Zhu, Z.; Tian, Y.; Kauppinen, E. I. et al. Predominant (6, 5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 2010, 132, 13994–13996.

23

He, M. S.; Jiang, H.; Liu, B. L.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Anoshkin, I. V. et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 2013, 3, 1460.

24

He, M. S.; Wang, X.; Zhang, L. L.; Wu, Q. R.; Song, X. J.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Sainio, J.; Jiang, H. et al. Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes. Carbon 2018, 128, 249–256.

25

Loebick, C. Z.; Podila, R.; Reppert, J.; Chudow, J.; Ren, F.; Haller, G. L.; Rao, A. M.; Pfefferle, L. D. Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 11125–11131.

26

Chen, Y.; Ciuparu, D.; Lim, S.; Yang, Y. H.; Haller, G. L.; Pfefferle, L. Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: Effects of the catalyst prereduction and nanotube growth temperatures. J. Catal. 2004, 225, 453–465.

27

Wang, H.; Wang, B.; Quek, X. Y.; Wei, L.; Zhao, J. W.; Li, L. J.; Chan-Park, M. B.; Yang, Y. H.; Chen, Y. Selective synthesis of (9, 8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J. Am. Chem. Soc. 2010, 132, 16747–16749.

28

Cui, K. H.; Kumamoto, A.; Xiang, R.; An, H.; Wang, B.; Inoue, T.; Chiashi, S.; Ikuhara, Y.; Maruyama, S. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale 2016, 8, 1608–1617.

29

An, H.; Kumamoto, A.; Takezaki, H.; Ohyama, S.; Qian, Y.; Inoue, T.; Ikuhara, Y.; Chiashi, S.; Xiang, R.; Maruyama, S. Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst. Nanoscale 2016, 8, 14523–14529.

30

An, H.; Kumamoto, A.; Xiang, R.; Inoue, T.; Otsuka, K.; Chiashi, S.; Bichara, C.; Loiseau, A.; Li, Y.; Ikuhara, Y. et al. Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO2. Sci. Adv. 2019, 5, eaat9459.

31

Yang, F.; Zhao, H. F.; Wang, X. W.; Liu, X.; Liu, Q. D.; Liu, X. Y.; Jin, C. H.; Wang, R. M.; Li, Y. Atomic scale stability of tungsten–cobalt intermetallic nanocrystals in reactive environment at high temperature. J. Am. Chem. Soc. 2019, 141, 5871–5879.

32

Tao, X. Y.; Zhang, X. B.; Cheng, J. P.; Wang, Y. W.; Liu, F.; Luo, Z. Q. Synthesis of novel multi-branched carbon nanotubes with alkali-element modified Cu/MgO catalyst. Chem. Phys. Lett. 2005, 409, 89–92.

33

Lee, S. Y.; Yamada, M.; Miyake, M. Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon 2005, 43, 2654–2663.

34

Li, P.; Zhang, X.; Liu, J. Aligned single-walled carbon nanotube arrays from rhodium catalysts with unexpected diameter uniformity independent of the catalyst size and growth temperature. Chem. Mater. 2016, 28, 870–875.

35

Ritschel, M.; Leonhardt, A.; Elefant, D.; Oswald, S.; Büchner, B. Rhenium-catalyzed growth carbon nanotubes. J. Phys. Chem. C. 2007, 111, 8414–8417.

36

Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

37

Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

38

Cao, K. C.; Zoberbier, T.; Biskupek, J.; Botos, A.; McSweeney, R. L.; Kurtoglu, A.; Stoppiello, C. T.; Markevich, A. V.; Besley, E.; Chamberlain, T. W. et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts. Nat. Commun. 2018, 9, 3382.

39

Olsthoorn, A. A.; Boelhouwer, C. An infrared spectroscopic study of the Re2O7/Al2O3 metathesis catalyst: I. Physicochemical properties, structure, and synthesis. J. Catal. 1976, 44, 197–206.

40

Hardcastle, F. D.; Wachs, I. E.; Horsley, J. A.; Via, G. H. The structure of surface rhenium oxide on alumina from laser Raman spectroscopy and X-ray absorption near-edge spectroscopy. J. Mol. Catal. 1988, 46, 15–36.

41

Greiner, M. T.; Rocha, T. C. R.; Johnson, B.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Z. Phys. Chem. 2014, 228, 521–541.

42

Tian, Y.; Jiang, H.; von Pfaler, J.; Zhu, Z.; Nasibulin, A. G.; Nikitin, T.; Aitchison, B.; Khriachtchev, L.; Brown, D. P.; Kauppinen, E. I. Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 2010, 1, 1143–1148.

43

Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N. A.; Selvasundaram, P. B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S. et al. Separation of specific single-enantiomer single-wall carbon nanotubes in the large-diameter regime. ACS Nano 2020, 14, 948–963.

44

Zhang, S. C.; Lin, D. W.; Liu, W. M.; Yu, Y.; Zhang, J. Growth of single-walled carbon nanotubes with different chirality on same solid cobalt catalysts at low temperature. Small 2019, 15, 1903896.

45

Artyukhov, V. I.; Penev, E. S.; Yakobson, B. I. Why nanotubes grow chiral. Nat. Commun. 2014, 5, 4892.

46

Zhang, S. C.; Wang, X.; Yao, F. R.; He, M. S.; Lin, D. W.; Ma, H.; Sun, Y. Y.; Zhao, Q. C.; Liu, K. H.; Ding, F. et al. Controllable growth of (n, n − 1) family of semiconducting carbon nanotubes. Chem 2019, 5, 1182–1193.

47

Liao, Y. P.; Jiang, H.; Wei, N.; Laiho, P.; Zhang, Q.; Khan, S. A.; Kauppinen, E. I. Direct synthesis of colorful single-walled carbon nanotube thin films. J. Am. Chem. Soc. 2018, 140, 9797–9800.

48

Zhu, Z.; Jiang, H.; Susi, T.; Nasibulin, A. G.; Kauppinen, E. I. The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 2011, 133, 1224–1227.

49

He, M. S.; Magnin, Y.; Amara, H.; Jiang, H.; Cui, H. Z.; Fossard, F.; Castan, A.; Kauppinen, E.; Loiseau, A.; Bichara, C. Linking growth mode to lengths of single-walled carbon nanotubes. Carbon 2017, 113, 231–236.

50

He, M. S.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10, 6744–6750.

51

Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.

52

Tune, D. D.; Flavel, B. S. Advances in carbon nanotube–silicon heterojunction solar cells. Adv. Energy Mater. 2018, 8, 1703241.

53

Schießl, S. P.; Fröhlich, N.; Held, M.; Gannott, F.; Schweiger, M.; Forster, M.; Scherf, U.; Zaumseil, J. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Appl. Mater. Interfaces 2015, 7, 682–689.

54

Tunuguntla, R. H.; Allen, F. I.; Kim, K.; Belliveau, A.; Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 2016, 11, 639–644.

55

Zeng, X.; Yang, D. H.; Liu, H. P.; Zhou, N. G.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S.; Kataura, H. Detecting and tuning the interactions between surfactants and carbon nanotubes for their high-efficiency structure separation. Adv. Mater. Interfaces 2018, 5, 1700727.

56

Hároz, E. H.; Duque, J. G.; Lu, B. Y.; Nikolaev, P.; Arepalli, S.; Hauge, R. H.; Doorn, S. K.; Kono, J. Unique origin of colors of armchair carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 4461–4464.

57

Wei, N.; Tian, Y.; Liao, Y. P.; Komatsu, N.; Gao, W. L.; Lyuleeva-Husemann, A.; Zhang, Q.; Hussain, A.; Ding, E. X.; Yao, F. R. et al. Carbon nanotubes: Colors of single-wall carbon nanotubes (Adv. Mater. 8/2021). Adv. Mater. 2021, 33, 2006395.

58

Wu, Q. R.; Zhang, H.; Ma, C.; Li, D.; Xin, L. T.; Zhang, X. T.; Zhao, N.; He, M. S. SiO2-promoted growth of single-walled carbon nanotubes on an alumina supported catalyst. Carbon 2021, 176, 367–373.

59

Wu, Q. R.; Qiu, L.; Zhang, L. L.; Liu, H. P.; Ma, R. X.; Xie, P.; Liu, R. L.; Hou, P. X.; Ding, F.; Liu, C. et al. Temperature-dependent selective nucleation of single-walled carbon nanotubes from stabilized catalyst nanoparticles. Chem. Eng. J. 2022, 431, 133487.

File
12274_2022_4248_MOESM1_ESM.pdf (731.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2021
Revised: 05 February 2022
Accepted: 17 February 2022
Published: 08 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors would like to acknowledge the National Key Research and Development Program of China (Nos. 2020YFA0714700 and 2018YFA0208402), the National Natural Science Foundation of China (Nos. 51972184, 51820105002, 11634014, and 51872320), the Key Basic Research Project of Shandong Province (No. ZR2019ZD49), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB33030100), the Key Research Program of Frontier Sciences, CAS (No. QYZDBSSW-SYS028), and the Youth Innovation Promotion Association of CAS (No. 2020005). Funding from Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology is also acknowledged. Mr. Z. J. is acknowledged for the experimental support.

Return