Journal Home > Volume 15 , Issue 6

Monochiral single-walled carbon nanotubes (SWCNTs) can enable high-performance carbon-based electronic devices and integrated circuits. However, their fabrication often requires complex SWCNT purification and enrichment. Herein, we showed that isoindigo-based polymer derivatives (PDPPIID and PFIID) directly enriched (9,8) nanotubes from as-synthesized SWCNT powders selectively and efficiently to yield high concentration (9,8) nanotube inks. The selective wrapping mechanism was elucidated by classical full-atomistic molecular dynamic (MD) simulations. Thin-film transistors (TFTs) were fabricated by depositing the SWCNT ink into device channels using aerosol jet printing. TFT performance was strongly influenced by polymer residues, the deposition condition (humidity), and ink concentration. Optimized TFTs showed excellent device-to-device uniformity with 108 on/off ratios. Further, optoelectronic transistors were fabricated, and their photoelectrical neuromorphic characteristics, storage, memory, and logic functions were characterized under the pulsed light and voltage stimulations, demonstrating excellent application potentials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Printed thin film transistors with 108 on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched (9,8) carbon nanotubes

Show Author's information Wenjing Xu1,2,3,4,§Min Li2,3,§Masayoshi Tange5Liqiang Li6Juncai Hou1,4( )Jun Ye7( )Li Wei8Yuan Chen8( )Jianwen Zhao2,3( )
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Division of Nanodevices and Related Nanomaterials, Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou 215123, China
School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, Shaanxi University of Technology, Hanzhong 723001, China
Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 3058565, Japan
Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou 215123, China
Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore
School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia

§ Wenjing Xu and Min Li contributed equally to this work.

Abstract

Monochiral single-walled carbon nanotubes (SWCNTs) can enable high-performance carbon-based electronic devices and integrated circuits. However, their fabrication often requires complex SWCNT purification and enrichment. Herein, we showed that isoindigo-based polymer derivatives (PDPPIID and PFIID) directly enriched (9,8) nanotubes from as-synthesized SWCNT powders selectively and efficiently to yield high concentration (9,8) nanotube inks. The selective wrapping mechanism was elucidated by classical full-atomistic molecular dynamic (MD) simulations. Thin-film transistors (TFTs) were fabricated by depositing the SWCNT ink into device channels using aerosol jet printing. TFT performance was strongly influenced by polymer residues, the deposition condition (humidity), and ink concentration. Optimized TFTs showed excellent device-to-device uniformity with 108 on/off ratios. Further, optoelectronic transistors were fabricated, and their photoelectrical neuromorphic characteristics, storage, memory, and logic functions were characterized under the pulsed light and voltage stimulations, demonstrating excellent application potentials.

Keywords: molecular dynamic simulation, monochiral carbon nanotube, polymer wrapping, printed thin-film transistor, photoelectrical synergistic

References(54)

1

Rojas, W. A. G.; Hersam, M. C. Chirality-enriched carbon nanotubes for next-generation computing. Adv. Mater. 2020, 32, 1905654.

2

Si, J.; Xu, L.; Zhu, M. G.; Zhang, Z. Y.; Peng, L. M. Advances in high-performance carbon-nanotube thin-film electronics. Adv. Electron. Mater. 2019, 5, 1900122.

3

Noyce, S. G.; Doherty, J. L.; Cheng, Z. H.; Han, H.; Bowen, S.; Franklin, A. D. Electronic stability of carbon nanotube transistors under long-term bias stress. Nano Lett. 2019, 19, 1460–1466.

4

Li, Z.; Ding, J. F.; Finnie, P.; Lefebvre, J.; Cheng, F. Y.; Kingston, C. T.; Malenfant, P. R. L. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 2015, 8, 2179–2187.

5

Sun, J. F.; Shrestha, K.; Park, H.; Yadav, P.; Parajuli, S.; Lee, S.; Shrestha, S.; Koirala, G. R.; Kim, Y.; Marotrao, K. A. et al. Bridging R2R printed wireless 1 bit-code generator with an electrophoretic QR code acting as WORM for NFC carrier enabled authentication label. Adv. Mater. Technol. 2020, 5, 1900935.

6
Sun, J. F.; Parajuli, S.; Shrestha, K.; Park, J.; Shrestha, S.; Jung, Y.; Park, H.; Koirala, G. R.; Nasir, N.; Kim, S. et al. Printed four key-device units for unified platform of wireless anti-counterfeiting label to bridge in blockchain. Adv. Mater. Technol., in press, https://doi.org/10.1002/admt.202100969.
DOI
7

Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.

8

Homenick, C. M.; James, R.; Lopinski, G. P.; Dunford, J.; Sun, J. F.; Park, H.; Jung, Y.; Cho, G.; Malenfant, P. R. L. Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing. ACS Appl. Mater. Interfaces 2016, 8, 27900–27910.

9

Cao, X.; Lau, C.; Liu, Y. H.; Wu, F. Q.; Gui, H.; Liu, Q. Z.; Ma, Y. Q.; Wan, H. C.; Amer, M. R.; Zhou, C. W. Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano 2016, 10, 9816–9822.

10

Cardenas, J. A.; Upshaw, S.; Williams, N. X.; Catenacci, M. J.; Wiley, B. J.; Franklin, A. D. Impact of morphology on printed contact performance in carbon nanotube thin-film transistors. Adv. Funct. Mater. 2019, 29, 1805727.

11

Rother, M.; Schießl, S. P.; Zakharko, Y.; Gannott, F.; Zaumseil, J. Understanding charge transport in mixed networks of semiconducting carbon nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 5571–5579.

12

Zorn, N. F.; Zaumseil, J. Charge transport in semiconducting carbon nanotube networks. Appl. Phys. Rev. 2021, 8, 041318.

13

Liu, B. L.; Wu, F. Q.; Gui, H.; Zheng, M.; Zhou, C. W. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 2017, 11, 31–53.

14

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

15

Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

16

Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

17

Brohmann, M.; Berger, F. J.; Matthiesen, M.; Schießl, S. P.; Schneider, S.; Zaumseil, J. Charge transport in mixed semiconducting carbon nanotube networks with tailored mixing ratios. ACS Nano 2019, 13, 7323–7332.

18

Tessler, N.; Preezant, Y.; Rappaport, N.; Roichman, Y. Charge transport in disordered organic materials and its relevance to thin-film devices: A tutorial review. Adv. Mater. 2009, 21, 2741–2761.

19

Li, Y. H.; Zheng, M. M.; Yao, J.; Gong, W. B.; Li, Y. J.; Tang, J. S.; Feng, S.; Han, R. Y.; Sui, Q. C.; Qiu, S. et al. High-purity monochiral carbon nanotubes with a 1.2 nm diameter for high-performance field-effect transistors. Adv. Funct. Mater. 2022, 32, 2107119.

20

Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

21

Ouyang, J. Y.; Ding, J. F.; Lefebvre, J.; Li, Z.; Guo, C.; Kell, A. J.; Malenfant, P. R. L. Sorting of semiconducting single-walled carbon nanotubes in polar solvents with an amphiphilic conjugated polymer provides general guidelines for enrichment. ACS Nano 2018, 12, 1910–1919.

22

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

23

Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

24

Pramanik, D.; Maiti, P. K. DNA-assisted dispersion of carbon nanotubes and comparison with other dispersing agents. ACS Appl. Mater. Interfaces 2017, 9, 35287–35296.

25

Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

26

Cao, Q.; Han, S. J.; Tulevski, G. S. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat. Commun. 2014, 5, 5071.

27

Krupke, R.; Hennrich, F.; Weber, H. B.; Kappes, M. M.; Löhneysen, H. V. Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using Ac-dielectrophoresis. Nano Lett. 2003, 3, 1019–1023.

28

Subbaiyan, N. K.; Parra-Vasquez, A. N. G.; Cambré, S.; Cordoba, M. A. S.; Yalcin, S. E.; Hamilton, C. E.; Mack, N. H.; Blackburn, J. L.; Doorn, S. K.; Duque, J. G. Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes. Nano Res. 2015, 8, 1755–1769.

29

Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S. Separation of small-diameter single-walled carbon nanotubes in one to three steps with aqueous two-phase extraction. ACS Nano 2019, 13, 2567–2578.

30

Wang, H. L.; Bao, Z. N. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10, 737–758.

31

Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750.

32

Bati, A. S. R.; Yu, L. P.; Batmunkh, M.; Shapter, J. G. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 2018, 10, 22087–22139.

33

Wang, J. Y.; Lei, T. Separation of semiconducting carbon nanotubes using conjugated polymer wrapping. Polymers 2020, 12, 1548.

34

Liu, J.; Wang, C.; Tu, X. M.; Liu, B. L.; Chen, L.; Zheng, M.; Zhou, C. W. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 2012, 3, 1199.

35

Fagan, J. A.; Hároz, E. H.; Ihly, R.; Gui, H.; Blackburn, J. L.; Simpson, J. R.; Lam, S.; Walker, A. R. H.; Doorn, S. K.; Zheng, M. Isolation of > 1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano 2015, 9, 5377–5390.

36

Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

37

Perebeinos, V.; Tersoff, J.; Avouris, P. Electron–phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 2005, 94, 086802.

38

Wang, H.; Wei, L.; Ren, F.; Wang, Q.; Pfefferle, L. D.; Haller, G. L.; Chen, Y. Chiral-selective CoSO4/SiO2 catalyst for (9, 8) single-walled carbon nanotube growth. ACS Nano 2013, 7, 614–626.

39

Wang, H.; Ren, F.; Liu, C. C.; Si, R. M.; Yu, D. S.; Pfefferle, L. D.; Haller, G. L.; Chen, Y. CoSO4/SiO2 catalyst for selective synthesis of (9, 8) single-walled carbon nanotubes: Effect of catalyst calcination. J. Catal. 2013, 300, 91–101.

40

Luo, M. M.; Xie, H. F.; Wei, M. M.; Liang, K.; Shao, S. S.; Zhao, J. W.; Gao, T. Q.; Mo, L. X.; Chen, Y.; Chen, S. et al. High-performance partially printed hybrid CMOS inverters based on indium-zinc-oxide and chirality enriched carbon nanotube thin-film transistors. Adv. Electron. Mater. 2019, 5, 1900034.

41

Wei, L.; Liu, B. L.; Wang, X. T.; Gui, H.; Yuan, Y.; Zhai, S. L.; Ng, A. K.; Zhou, C. W.; Chen, Y. (9, 8) Single-walled carbon nanotube enrichment via aqueous two-phase separation and their thin-film transistor applications. Adv. Electron. Mater. 2015, 1, 1500151.

42

Si, R. M.; Wei, L.; Wang, H.; Su, D. D.; Mushrif, S. H.; Chen, Y. Extraction of (9, 8) single-walled carbon nanotubes by fluorene-based polymers. Chem. Asian J. 2014, 9, 868–877.

43

Gao, T. Z.; Lei, T.; Molina-Lopez, F.; Bao, Z. N. Enhanced process integration and device performance of carbon nanotubes via flocculation. Small Methods 2018, 2, 1800189.

44

Zhou, C. S.; Zhao, J. W.; Ye, J.; Tange, M.; Zhang, X.; Xu, W. W.; Zhang, K. D.; Okazaki, T.; Cui, Z. Printed thin-film transistors and NO2 gas sensors based on sorted semiconducting carbon nanotubes by isoindigo-based copolymer. Carbon 2016, 108, 372–380.

45

Lei, T.; Chen, X. Y.; Pitner, G.; Wong, H. S. P.; Bao, Z. N. Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes. J. Am. Chem. Soc. 2016, 138, 802–805.

46

Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.

47

Liu, Z.; Dai, S. L.; Wang, Y.; Yang, B.; Hao, D. D.; Liu, D. P.; Zhao, Y. W.; Fang, L.; Ou, Q. Q.; Jin, S. et al. Photoresponsive transistors based on lead-free perovskite and carbon nanotubes. Adv. Funct. Mater. 2020, 30, 1906335.

48

Pfohl, M.; Tune, D. D.; Graf, A.; Zaumseil, J.; Krupke, R.; Flavel, B. S. Fitting single-walled carbon nanotube optical spectra. ACS Omega 2017, 2, 1163–1171.

49

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

50

Xu, W. W.; Liu, Z.; Zhao, J. W.; Xu, W. Y.; Gu, W. B.; Zhang, X.; Qian, L.; Cui, Z. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes. Nanoscale 2014, 6, 14891–14897.

51

Liu, Z.; Zhao, J. W.; Xu, W. Y.; Qian, L.; Nie, S. H.; Cui, Z. Effect of surface wettability properties on the electrical properties of printed carbon nanotube thin-film transistors on SiO2/Si substrates. ACS Appl. Mater. Interfaces 2014, 6, 9997–10004.

52

Shao, L.; Li, M.; Wu, P. S.; Wang, F.; Chen, S. L.; Hu, W. D.; Wang, H.; Cui, Z.; Zhao, J. W. Optically and electrically modulated printed carbon nanotube synaptic transistors with a single input terminal and multi-functional output characteristics. J. Mater. Chem. C 2020, 8, 6914–6922.

53

Shao, L.; Wang, H. L.; Yang, Y.; He, Y. L.; Tang, Y. C.; Fang, H. H.; Zhao, J. W.; Xiao, H. S.; Liang, K.; Wei, M. M. et al. Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices. ACS Appl. Mater. Interfaces 2019, 11, 12161–12169.

54

Li, M.; Xiong, Z. Y.; Shao, S. S.; Shao, L.; Han, S. T.; Wang, H.; Zhao, J. W. Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes. Carbon 2021, 176, 592–601.

File
12274_2022_4246_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 December 2021
Revised: 23 January 2022
Accepted: 17 February 2022
Published: 08 April 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work (except M. T., J. Y., L. W., and Y. C.) was supported by the National Key Research and Development Program of China (No. 2020YFA0714700), the National Natural Science Foundation of China (No. 61874132), Key Research Program of Frontier Science of Chinese Academy of Sciences (No. QYZDB-SSW-SLH031), the Shaanxi Province Natural Science Foundation (No. 2017JM5063), Cooperation Project of Vacuum Interconnect Nano X Research Facility (No. NANO-X) of Suzhou nanotechnology and Nano-Bionics Institute, Chinese Academy of Sciences (No. E20045) and China scholarship fund (No. 201708615046). Y. C. acknowledges the Australian Research Council under the Future Fellowships scheme (No. FT160100107). M. T. thanks Prof. T. Okazaki (National Institute of Advanced Industrial Science and Technology) for experimental help.

Return