Journal Home > Volume 15 , Issue 7

Solar dermatitis is an acute or chronic high incidence of skin injury caused by ultraviolet (UV) radiation based on strong sunlight, which seriously endangers people's health. In this study, we designed and demonstrated enzyme-catalyzed semi-inter penetrating polymer network (Semi-IPN) sprayable nanodrug-loaded hydrogels based on gelatin, 3-(4-hydroxyphenyl) propionic acid (HPA), polyvinyl alcohol (PVA), glycerol, and dexamethasone sodium phosphate (DEXP) for solar dermatitis. The hydrogels had high water content, excellent biocompatibility, effective encapsulation and sustained release of nanodrugs, anti-inflammatory, and strong anti-ultraviolet B (anti-UVB) radiation properties based on glycerol and phenol functional groups, but also controllable spray gelation mode to make them adhere well on the dynamic skin surfaces and achieve continuous transdermal drugs delivery for solar dermatitis. The sprayable nanodrug-loaded hydrogel systems could be used as a highly effective therapeutic method for solar dermatitis, and also provide a good strategy for designing novel nanodrug-loaded hydrogel delivery systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sprayable nanodrug-loaded hydrogels with enzyme-catalyzed semi-inter penetrating polymer network (Semi-IPN) for solar dermatitis

Show Author's information Jialing Yao1,3Junfeng Hui1,3( )Jing Yang1,3Jiaxin Yao1,3Chaoquan Hu2( )Daidi Fan1,3( )
Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211100, China
Biotech. & Biomed. Research Institute, Northwest University, Xi’an 710069, China

Abstract

Solar dermatitis is an acute or chronic high incidence of skin injury caused by ultraviolet (UV) radiation based on strong sunlight, which seriously endangers people's health. In this study, we designed and demonstrated enzyme-catalyzed semi-inter penetrating polymer network (Semi-IPN) sprayable nanodrug-loaded hydrogels based on gelatin, 3-(4-hydroxyphenyl) propionic acid (HPA), polyvinyl alcohol (PVA), glycerol, and dexamethasone sodium phosphate (DEXP) for solar dermatitis. The hydrogels had high water content, excellent biocompatibility, effective encapsulation and sustained release of nanodrugs, anti-inflammatory, and strong anti-ultraviolet B (anti-UVB) radiation properties based on glycerol and phenol functional groups, but also controllable spray gelation mode to make them adhere well on the dynamic skin surfaces and achieve continuous transdermal drugs delivery for solar dermatitis. The sprayable nanodrug-loaded hydrogel systems could be used as a highly effective therapeutic method for solar dermatitis, and also provide a good strategy for designing novel nanodrug-loaded hydrogel delivery systems.

Keywords: enzyme-catalyzed, semi-inter penetrating polymer network (Semi-IPN), sprayable hydrogel, nanodrug-loaded, solar dermatitis

References(49)

1

Chaudhari, S.; Lucey, P.; Gorcey, L.; Chennupati, S.; Kalnicki, S.; McLellan, B. Management of radiation dermatitis. J. Clin. Oncol. 2015, 33, e20652.

2

Rosenthal, A.; Israilevich, R.; Moy, R. Management of acute radiation dermatitis: A review of the literature and proposal for treatment algorithm. J. Am. Acad. Dermatol. 2019, 81, 558–567.

3

Scheinman, P. L.; Vocanson, M.; Thyssen, J. P.; Johansen, J. D.; Nixon, R. L.; Dear, K.; Botto, N. C.; Morot, J.; Goldminz, A. M. Contact dermatitis. Nat. Rev. Dis. Prim. 2021, 7, 37–38.

4

Yusufov, M.; Rossi, J. S.; Redding, C. A.; Yin, H. Q.; Paiva, A. L.; Velicer, W. F.; Greene, G. W.; Blissmer, B.; Robbins, M. L.; Prochaska, J. O. Transtheoretical model Constructs’ longitudinal prediction of sun protection over 24 months. Int. J. Behav. Med. 2016, 23, 71–83.

5

Xu, X. J.; Chen, J. X.; Cai, S.; Long, Z. H.; Zhang, Y.; Su, L. X.; He, S. S.; Tang, C. Q.; Liu, P.; Peng, H. S. et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 2018, 30, 1803165.

6

Andersen, R. M.; Thyssen, J. P.; Maibach, H. I. The role of wet wrap therapy in skin disorders—A literature review. Acta Derm. Venereol. 2015, 95, 933–939.

7

Nie, J. Y.; Pei, B. Y.; Wang, Z. K.; Hu, Q. L. Construction of ordered structure in polysaccharide hydrogel: A review. Carbohyd. Polym. 2019, 205, 225–235.

8

Huang, X. Y.; Zhou, X. F.; Zhou, H.; Zhong, Y. D.; Luo, H.; Zhang, F. A high-strength self-healing nano-silica hydrogel with anisotropic differential conductivity. Nano Res. 2021, 14, 2589–2595.

9

Liu, B.; Gu, X. Q.; Sun, Q. N.; Jiang, S. J.; Sun, J.; Liu, K.; Wang, F.; Wei, Y. Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair. Adv. Funct. Mater. 2021, 31, 2010779.

10

He, J. Q.; Chen, G. Q.; Zhao, P.; Ou, C. W. Near-infrared light-controllable bufalin delivery from a black phosphorus-hybrid supramolecular hydrogel for synergistic photothermal-chemo tumor therapy. Nano Res. 2021, 14, 3988–3998.

11

Dimatteo, R.; Darling, N. J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Advanced Drug Deliv. Rev. 2018, 127, 167–184.

12

Ghawanmeh, A. A.; Ali, G. A. M.; Algarni, H.; Sarkar, S. M.; Chong, K. F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019, 12, 973–990.

13

Ling, Z. X.; Chen, Z. K.; Deng, J.; Wang, Y. F.; Yuan, B.; Yang, X.; Lin, H.; Cao, J.; Zhu, X. D.; Zhang, X. D. A novel self-healing polydopamine-functionalized chitosan-arginine hydrogel with enhanced angiogenic and antibacterial activities for accelerating skin wound healing. Chem. Eng. J. 2021, 420, 130302.

14

Zhao, P. C.; Xia, X. F.; Xu, X. Y.; Leung, K. K. C.; Rai, A.; Deng, Y. R.; Yang, B. G.; Lai, H. S.; Peng, X.; Shi, P. et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat. Commun. 2021, 12, 7162.

15

Zhang, Z.; Chai, Y.; Zhao, H.; Yang, S. H.; Liu, W.; Yang, Z. H.; Ye, W. L.; Wang, C. L.; Gao, X. H.; Kong, X. D. et al. Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self-assembling peptide nanofiber hydrogel. Nano Res. 2022, 15, 1433–1445.

16

Yang, J. H.; Jing, X. G.; Wang, Z. M.; Liu, X. J.; Zhu, X. F.; Lei, T.; Li, X.; Guo, W. M.; Rao, H. J.; Chen, M. X.; Luan, K.; Sui, X.; Wei, Y.; Liu, S. Y.; Guo, Q. Y. In vitro and in vivo study on an injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogel in repairing articular cartilage defects. Front. Bioeng. Biotechnol. 2021, 9, 607709.

17

Pan, R. H.; Liu, G. Q.; Zeng, Y.; He, X. Z.; Ma, Z. Y.; Wei, Y.; Chen, S. L.; Yang, L.; Tao, L. A multi-responsive self-healing hydrogel for controlled release of curcumin. Polym. Chem. 2021, 12, 2457–2463.

18

Lei, K.; Wang, K. Q.; Sun, Y. L.; Zheng, Z.; Wang, X. L. Rapid-fabricated and recoverable dual-network hydrogel with inherently anti-bacterial abilities for potential adhesive dressings. Adv. Funct. Mater. 2021, 31, 2008010.

19

He, J. H.; Zhang, Z. X.; Yang, Y. T.; Ren, F. G.; Li, J. P.; Zhu, S. J.; Ma, F.; Wu, R. Q.; Lv, Y.; He, G. et al. Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 2021, 13, 80.

20

Shen, S. H.; Fan, D. D.; Yuan, Y.; Ma, X. X.; Zhao, J.; Yang, J. An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds. Chem. Eng. J. 2021, 426, 130610.

21

Yuan, Y.; Shen, S. H.; Fan, D. D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: Shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 2021, 276, 120838.

22

Bax, D. V.; Nair, M.; Weiss, A. S.; Farndale, R. W.; Best, S. M.; Cameron, R. E. Tailoring the biofunctionality of collagen biomaterials via tropoelastin incorporation and EDC-crosslinking. Acta Biomater. 2021, 135, 150–163.

23

Wang, C. E.; Yan, Q.; Liu, H. B.; Zhou, X. H.; Xiao, S. J. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir 2011, 27, 12058–12068.

24

Yuan, Z.; Tai, H. L.; Su, Y. J.; Xie, G. Z.; Du, X. S.; Jiang, Y. D. Self-assembled graphene oxide/polyethyleneimine films as high-performance quartz crystal microbalance humidity sensors. Rare Met. 2021, 40, 1597–1603.

25

Han, X.; Li, M. Y.; Fan, Z. W.; Zhang, Y.; Zhang, H. H.; Li, Q. L. PVA/Agar interpenetrating network hydrogel with fast healing, high strength, antifreeze, and water retention. Macromol. Chem. Phys. 2020, 221, 2000237.

26

Li, G. Y.; Jiang, Y. C.; Li, M. Y.; Zhang, W. J.; Li, Q.; Tang, K. Y. Investigation on the tunable effect of oxidized konjac glucomannan with different molecular weight on gelatin-based composite hydrogels. Int. J. Biol. Macromol. 2021, 168, 233–241.

27

Lee, F.; Chung, J. E.; Kurisawa, M. An injectable enzymatically crosslinked hyaluronic acid-hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matt. 2008, 4, 880–887.

28

Pal, P.; Pandey, J. P.; Sen, G. Sesbania gum based hydrogel as platform for sustained drug delivery: An “in vitro” study of 5-Fu release. Int. J. Biol. Macromol. 2018, 113, 1116–1124.

29

Moreau, J. E.; Bramono, D. S.; Horan, R. L.; Kaplan, D. L.; Altman, G. H. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng. Part A 2008, 14, 1161–1172.

30

Huang, Q.; Cai, Y. T.; Yang, X. R.; Li, W. M.; Pu, H. J.; Liu, Z. J.; Liu, H. W.; Tamtaji, M.; Xu, F.; Sheng, L. Y. et al. Graphene foam/hydrogel scaffolds for regeneration of peripheral nerve using ADSCs in a diabetic mouse model. Nano Res. 2021.

31

Panzuti, P.; Vidémont, E.; Fantini, O.; Fardouet, L.; Noël, G.; Cappelle, J.; Pin, D. A moisturizer formulated with glycerol and propylene glycol accelerates the recovery of skin barrier function after experimental disruption in dogs. Vet. Dermatol. 2020, 31, e88–e89.

32

Lodén, M. Effect of moisturizers on epidermal barrier function. Clin. Dermatol. 2012, 30, 286–296.

33

Wang, R.; Wang, X. X.; Zhan, Y. J.; Xu, Z.; Xu, Z.; Feng, X. H.; Li, S.; Xu, H. A dual network hydrogel sunscreen based on poly-γ-glutamic acid/tannic acid demonstrates excellent anti-UV, self-recovery, and skin-integration capacities. ACS Appl. Mater. Interfaces 2019, 11, 37502–37512.

34

Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2021, 15, 2060–2068.

35

Nekova, T. S.; Kneitz, S.; Einsele, H.; Bargou, R.; Stuhler, G. Silencing of CDK2, but not CDK1, separates mitogenic from anti-apoptotic signaling, sensitizing p53 defective cells for synthetic lethality. Cell Cycle 2016, 15, 3203–3209.

36
Banerjee, S. Transdermal patches: An overview. In Adhesion in Pharmaceutical: Biomedical and Dental Fields; Mittal, K. L., Etzler, F. M., Eds.; Scrivener Publishing LLC: Wiley, 2017; pp 1–420.
37

Rehman, K.; Zulfakar, M. H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm. 2014, 40, 433–440.

38

Sun, Y.; Chen, M. L.; Yang, D.; Qin, W. B.; Quan, G. L.; Wu, C. B.; Pan, X. Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 2021, 15, 2335–2346.

39

Jiang, T. Y.; Xu, G.; Chen, G. J.; Zheng, Y.; He, B. F.; Gu, Z. Progress in transdermal drug delivery systems for cancer therapy. Nano Res. 2020, 13, 1810–1824.

40

Escobedo, P.; Ramos-Lorente, C. E.; Martínez-Olmos, A.; Carvajal, M. A.; Ortega-Muñoz, M.; De Orbe-Payá, I.; Hernández-Mateo, F.; Santoyo-González, F.; Capitán-Vallvey, L. F.; Palma, A. J. et al. Wireless wearable wristband for continuous sweat pH monitoring. Sens. Actuat. B: Chem. 2021, 327, 128948.

41

Ali, S. M.; Yosipovitch, G. Skin pH: From basic science to basic skin care. Acta Derm. Venerol. 2013, 93, 261–267.

42

Anderson, D. S. The acid-base balance of the skin. Br. J. Dermatol. 1951, 63, 283–295.

43

Schneider, L. A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 298, 413–420.

44

Luo, M.; Winston, D. D.; Niu, W.; Wang, Y. D.; Zhao, H. Y.; Qu, X. Y.; Lei, B. Bioactive therapeutics-repair-enabled citrate-iron hydrogel scaffolds for efficient post-surgical skin cancer treatment. Chem. Eng. J. 2021, 431, 133596.

45

Sharma, G.; Thakur, B.; Kumar, A.; Sharma, S.; Naushad, M.; Stadler, F. J. Atrazine removal using chitin-cl-poly(acrylamide-co-itaconic acid) nanohydrogel: Isotherms and pH responsive nature. Carbohydr. Polym. 2020, 241, 116258.

46

Li, P. F.; Wang, T.; He, J.; Jiang, J. X.; Lei, F. H. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int. J. Biol. Macromol. 2021, 183, 1987–2000.

47

Ding, H. C.; Li, B. Q.; Jiang, Y. L.; Liu, G.; Pu, S. Z.; Feng, Y. J.; Jia, D. C.; Zhou, Y. pH-responsive UV crosslinkable chitosan hydrogel via “thiol-ene” click chemistry for active modulating opposite drug release behaviors. Carbohydr. Polym. 2021, 251, 117101.

48

Gaffney, L.; Warren, P.; Wrona, E. A.; Fisher, M. B.; Freytes, D. O. Macrophages’ role in tissue disease and regeneration. Results Probl. Cell Differ. 2017, 62, 245–271.

49

Chen, Y. A.; Lee, J. Y. Y. Clinicopathologic study of solar dermatitis, a pinpoint papular variant of polymorphous light eruption in Taiwan, and review of the literature. J. Formos. Med. Assoc. 2013, 112, 125–130.

File
12274_2022_4236_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 January 2022
Revised: 11 February 2022
Accepted: 13 February 2022
Published: 29 March 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22078265, 22108225, and 21838009), the Shaanxi Provincial Science Foundation (Nos. 2017SF-201 and 2021JQ-434), and China Postdoctoral Science Foundation (No. 2018M643720).

Return