Journal Home > Volume 15 , Issue 6

Single-atom catalysts (SACs) with the advantages of homogeneous and heterogeneous catalysts have become a hot-spot in catalysis field. However, for lack of metal–metal bond in SACs, H2 has to go through heterolytic dissociation pathway, which has higher barrier than homolytic dissociation pathway, and thus limits the hydrogenation activity of SACs. Herein, we propose and demonstrate through constructing synergistic iridium single atoms and nanoparticles co-existed catalyst (denoted as Ir1+NPs/CMK) to boost the catalytic activity of quinoline hydrogenation. Both experimental and density functional theory calculation results confirm that Ir1 single sites activate quinoline, while Ir nanoparticles boost hydrogen dissociation. H atoms generated at Ir nanoparticles migrate to the quinoline bounded Ir1 single sites to complete hydrogenation. The Ir1+NPs/CMK catalyst exhibits much higher reactivity with turnover frequency of 7,800 h−1 than those counterpart Ir1/CMK and IrNPs/CMK catalysts, and is 20,000 times higher activity of commercial Ir/C benchmark catalyst for hydrogenation of quinoline under the same reaction conditions. This synergistic catalysis strategy between single atoms and nanoparticles provides a solution to further improve the performance of SACs for hydrogenation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis

Show Author's information Qikai Shen1,2Hongqiang Jin1,2Peipei Li1,2Xiaohu Yu3Lirong Zheng4Weiguo Song1,2( )Changyan Cao1,2( )
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Single-atom catalysts (SACs) with the advantages of homogeneous and heterogeneous catalysts have become a hot-spot in catalysis field. However, for lack of metal–metal bond in SACs, H2 has to go through heterolytic dissociation pathway, which has higher barrier than homolytic dissociation pathway, and thus limits the hydrogenation activity of SACs. Herein, we propose and demonstrate through constructing synergistic iridium single atoms and nanoparticles co-existed catalyst (denoted as Ir1+NPs/CMK) to boost the catalytic activity of quinoline hydrogenation. Both experimental and density functional theory calculation results confirm that Ir1 single sites activate quinoline, while Ir nanoparticles boost hydrogen dissociation. H atoms generated at Ir nanoparticles migrate to the quinoline bounded Ir1 single sites to complete hydrogenation. The Ir1+NPs/CMK catalyst exhibits much higher reactivity with turnover frequency of 7,800 h−1 than those counterpart Ir1/CMK and IrNPs/CMK catalysts, and is 20,000 times higher activity of commercial Ir/C benchmark catalyst for hydrogenation of quinoline under the same reaction conditions. This synergistic catalysis strategy between single atoms and nanoparticles provides a solution to further improve the performance of SACs for hydrogenation.

Keywords: heterogeneous catalysis, hydrogenation, single atom, synergistic, quinoline

References(52)

1

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

2

Sánchez-Delgado, R. A.; Machalaba, N.; Ng-A-Qui, N. Hydrogenation of quinoline by ruthenium nanoparticles immobilized on poly(4-vinylpyridine). Catal. Commun. 2007, 8, 2115–2118.

3

Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. A.; Wang, Y.; Cao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632–2640.

4

Sun, B.; Khan, F. A.; Vallat, A.; Süss-Fink, G. Nanoru@hectorite: A heterogeneous catalyst with switchable selectivity for the hydrogenation of quinoline. Appl. Catal. A: Gen. 2013, 467, 310–314.

5

Sánchez, A.; Fang, M. F.; Ahmed, A.; Sánchez-Delgado, R. A. Hydrogenation of arenes, N-heteroaromatic compounds, and alkenes catalyzed by rhodium nanoparticles supported on magnesium oxide. Appl. Catal. A: Gen. 2014, 477, 117–124.

6

Guo, M.; Li, C.; Yang, Q. H. Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catal. Sci. Technol. 2017, 7, 2221–2227.

7

Vivancos, Á.; Beller, M.; Albrecht, M. NHC-based iridium catalysts for hydrogenation and dehydrogenation of N-heteroarenes in water under mild conditions. ACS Catal. 2018, 8, 17–21.

8

Li, S. P.; Yang, Y. D.; Wang, Y. Y.; Liu, H. Z.; Tai, J.; Zhang, J.; Han, B. X. A route to support Pt sub-nanoparticles on TiO2 and catalytic hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline at room temperature. Catal. Sci. Technol. 2018, 8, 4314–4317.

9

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

10

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

11
Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. in press,https://doi.org/10.1007/s12274-021-3935-5.
12

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

13

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

14

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

15

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

16

Lai, W. H.; Miao, Z. C.; Wang, Y. X.; Wang, J. Z.; Chou, S. L. Atomic-local environments of single-atom catalysts: Synthesis, electronic structure, and activity. Adv. Energy Mater. 2019, 9, 1900722.

17

Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 2019, 5, eaax6322.

18

Li, S. W.; Cao, R. C.; Xu, M. Q.; Deng, Y. C.; Lin, L. L.; Yao, S. Y.; Liang, X.; Peng, M.; Gao, Z. R.; Ge, Y. Z. et al. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. Natl. Sci. Rev. 2022, 9, nwab026.

19

Long, X. D.; Li, Z. L.; Gao, G.; Sun, P.; Wang, J.; Zhang, B. S.; Zhong, J.; Jiang, Z.; Li, F. W. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 2020, 11, 4074.

20

Li, G. Q.; Yang, H. H.; Zhang, H. F.; Qi, Z. Y.; Chen, M. D.; Hu, W.; Tian, L. H.; Nie, R. F.; Huang, W. Y. Encapsulation of nonprecious metal into ordered mesoporous N-doped carbon for efficient quinoline transfer hydrogenation with formic acid. ACS Catal. 2018, 8, 8396–8405.

21

Guan, E. J.; Gates, B. C. Stable rhodium pair sites on MgO: Influence of ligands and rhodium nuclearity on catalysis of ethylene hydrogenation and H–D exchange in the reaction of H2 with D2. ACS Catal. 2018, 8, 482–487.

22

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

23

Gelder, E. A.; Jackson, S. D.; Lok, C. M. The hydrogenation of nitrobenzene to aniline: A new mechanism. Chem. Commun. 2005, 522–524.

24

Shimizu, K. I.; Miyamoto, Y.; Satsuma, A. Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J. Catal. 2010, 270, 86–94.

25

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

26

Vargas, A.; Bürgi, T.; Baiker, A. Adsorption of activated ketones on platinum and their reactivity to hydrogenation: A DFT study. J. Catal. 2004, 222, 439–449.

27

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

28

Ye, T. N.; Xiao, Z. W.; Li, J.; Gong, Y. T.; Abe, H.; Niwa, Y.; Sasase, M.; Kitano, M.; Hosono, H. Stable single platinum atoms trapped in sub-nanometer cavities in 12CaO·7Al2O3 for chemoselective hydrogenation of nitroarenes. Nat. Commun. 2020, 11, 1020.

29

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

30

Wang, C. T.; Guan, E. J.; Wang, L.; Chu, X. F.; Wu, Z. Y.; Zhang, J.; Yang, Z. Y.; Jiang, Y. W.; Zhang, L.; Meng, X. J. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482–8488.

31

Wang, X. Y.; Sang, X. H.; Dong, C. L.; Yao, S. Y.; Shuai, L.; Lu, J. G.; Yang, B.; Li, Z. J.; Lei, L. C.; Qiu, M. et al. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal–nitrogen active sites. Angew. Chem., Int. Ed. 2021, 60, 11959–11965.

32

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

33

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

34

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

35

Blöchl, P. E.; Först, C. J.; Schimpl, J. Projector augmented wave method: Ab initio molecular dynamics with full wave functions. Bull. Mater. Sci. 2003, 26, 33–41.

36

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

37

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

38

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

39
Koningsberger, D. C.; Prins, R. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; Wiley: New York, 1988.
40

Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

41

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

42

Sun, Y. P.; Fu, H. Y.; Zhang, D. L.; Li, R. X.; Chen, H.; Li, X. J. Complete hydrogenation of quinoline over hydroxyapatite supported ruthenium catalyst. Catal. Commun. 2010, 12, 188–192.

43

Mao, H.; Ma, J.; Liao, Y.; Zhao, S. L.; Liao, X. P. Using plant tannin as natural amphiphilic stabilizer to construct an aqueous-organic biphasic system for highly active and selective hydrogenation of quinoline. Catal. Sci. Technol. 2013, 3, 1612–1617.

44

Fang, M. F.; Sánchez-Delgado, R. A. Ruthenium nanoparticles supported on magnesium oxide: A versatile and recyclable dual-site catalyst for hydrogenation of mono- and poly-cyclic arenes, N-heteroaromatics, and S-heteroaromatics. J. Catal. 2014, 311, 357–368.

45

Niu, M. M.; Wang, Y. H.; Chen, P.; Du, D. J.; Jiang, J. Y.; Jin, Z. L. Highly efficient and recyclable rhodium nanoparticle catalysts for hydrogenation of quinoline and its derivatives. Catal. Sci. Technol. 2015, 5, 4746–4749.

46

Tang, M.; Deng, J.; Li, M. M.; Li, X. F.; Li, H. R.; Chen, Z. R.; Wang, Y. 3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for toluene and quinoline hydrogenation. Green Chem. 2016, 18, 6082–6090.

47

Karakulina, A.; Gopakumar, A.; Fei, Z. F.; Dyson, P. J. Chemoselective reduction of heteroarenes with a reduced graphene oxide supported rhodium nanoparticle catalyst. Catal. Sci. Technol. 2018, 8, 5091–5097.

48

Xue, X. R.; Zeng, M.; Wang, Y. H. Highly active and recyclable Pt nanocatalyst for hydrogenation of quinolines and isoquinolines. Appl. Catal. A: Gen. 2018, 560, 37–41.

49

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal–nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

50

Bai, L. C.; Wang, X.; Chen, Q.; Ye, Y. F.; Zheng, H. Q.; Guo, J. H.; Yin, Y. D.; Gao, C. B. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew. Chem., Int. Ed. 2016, 55, 15656–15661.

51

Zhang, S.; Xia, Z. M.; Zou, Y.; Zhang, M. K.; Qu, Y. Q. Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines. Nat. Commun. 2021, 12, 3382.

52

Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709.

File
12274_2022_4235_MOESM1_ESM.pdf (4.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2022
Revised: 11 February 2022
Accepted: 13 February 2022
Published: 22 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 92161112 and 21932006), the National Key Research and Development Program of China (Nos. 2018YFA0208504 and 2018YFA0703503), the Youth Innovation Promotion Association of CAS (No. 2017049), and the National Science Basic Program of Shaanxi (No. S2020-JC-WT-0001).

Return