AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction

Katam Srinivas1,§Xin Chen1,§Dawei Liu1Fei Ma1Xiaojuan Zhang1Wanli Zhang1Hua Lin2( )Yuanfu Chen1,3( )
School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
School of Materials and Energy, Southwest University, Chongqing 400715, China
College of Science, and Institute of Oxygen Supply, Tibet University, Lhasa 850000, China

§ Katam Srinivas and Xin Chen contributed equally to this work.

Show Author Information

Graphical Abstract

A unique and widely acceptable vapor-phased Fe-doping strategy has been established to fabricate metal/metal oxide heteronanoparticles implanted carbon nanotube (CNT)-interconnected semi-metal-organic framework (MOF) nanosheets. As-obtained materials displayed exceptional oxygen evolution performance owing to the structural advantages related to MOF-nanostructure, modified heteroatom-doped surface and the CNT-assisted enhanced conductivity.

Abstract

Development of cost-effective, efficient, and durable electrocatalysts for oxygen evolution reaction (OER) with fast kinetic reaction is highly significant, considering the elevated thermodynamic energy barrier involved in water electrolysis. To overcome such challenges, an innovative vapor phased iron-doping strategy is employed on carbon nanotubes (CNT)-interlinked metal-organic framework (MOF) nanosheets (Ni-MOF@CNT) to obtain mixed metal oxide and metal heteronanoparticles superficially implanted partially (semi)-decomposed MOF nanosheets (Ni-M@C-400). These semi-MOF nanosheets attain the structural privileges related to MOF-nanostructure, mixed metal nanoparticles synergism, interconnected-CNT assisted high conductivity, and mechanical strength. As a result, Ni-M@C-400 exhibits exceptional OER activity with overpotential as low as 229 mV to reach the benchmark current density of 10 mA/cm2 (η10) and exhibits greatly reduced thermodynamic barrier (Tafel slopes of 40.51 mV/dec) along with significant durability for ~ 60 h. More importantly, this sublimated iron-doped semi-MOF (Ni-M@C-400) displays significantly better OER performance over the corresponding annealed bimetallic MOF (NiFe-M@C-400: 270 mV at η10). Moreover, the successful incorporation of vapor phased iron into variety of MOFs (Cr, Mn, Co, Ni, and Cu) approved its uniqueness and the universality. This work provides an innovative vapor phased heteroatom-doping strategy to develop cost-effective and efficient electrocatalysts for water electrolysis.

Electronic Supplementary Material

Download File(s)
12274_2022_4231_MOESM1_ESM.pdf (2 MB)

References

1

Chu, S; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Zhou, T. P.; Shan, H.; Yu, H.; Zhong, C. A.; Ge, J. K.; Zhang, N.; Chu, W. S.; Yan, W. S.; Xu, Q.; Wu, H. A. et al. Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 2020, 32, 2003251.

3

Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

4

Qin, T. C.; Wang, Z. G.; Wang, Y. Q.; Besenbacher, F.; Otyepka, M.; Dong, M. D. Recent progress in emerging two-dimensional transition metal carbides. Nano-Micro Lett. 2021, 13, 183.

5

Srinivas, K.; Chen, Y. F.; Wang, B.; Yu, B.; Wang, X. Q.; Hu, Y.; Lu, Y. J.; Li, W. X.; Zhang, W. L.; Yang, D. X. Metal-organic framework-derived NiS/Fe3O4 heterostructure-decorated carbon nanotubes as highly efficient and durable electrocatalysts for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 31552–31563.

6

Wang, Y. M.; Qian, G. F.; Xu, Q. L.; Zhang, H.; Shen, F.; Luo, L.; Yin, S. B. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Appl. Catal. B:Environ. 2021, 286, 119881.

7

Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

8

Li, X. Y.; Xiao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

9

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

10

Wang, W. B.; Yang, Y.; Zhao, Y.; Wang, S. Z.; Ai, X. M.; Fang, J. K.; Liu, Y. W. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 2022, 15, 872–880.

11

Zhong, D. Z.; Li, T.; Wang, D.; Li, L. N.; Wang, J. C.; Hao, G. Y.; Liu, G.; Zhao, Q.; Li, J. P. Strengthen metal–oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 2022, 15, 162–169.

12

Yang, D. X.; Chen, Y. F.; Su, Z.; Zhang, X. J.; Zhang, W. L.; Srinivas, K. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord. Chem. Rev. 2021, 428, 213619.

13

Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

14

Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

15

Luo, X.; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. N.; He, J. W.; Shi, Z. H.; Li, N. et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.

16

Gu, X. K.; Camayang, J. C. A.; Samira, S.; Nikolla, E. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. J. Catal. 2020, 388, 130–140.

17

Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

18

Wang, Z. G.; Wu, H. H.; Li, Q.; Besenbacher, F.; Li, Y. R.; Zeng, X. C.; Dong, M. D. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. 2020, 7, 1901382.

19

Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. T. et al. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv. Energy Mater. 2019, 9, 1802856.

20

Chen, J. Y.; Zhuang, P. Y.; Ge, Y. C.; Chu, H.; Yao, L. Y.; Cao, Y. D.; Wang, Z. Y.; Chee, M. O. L.; Dong, P.; Shen, J. F. et al. Sublimation-vapor phase pseudomorphic transformation of template-directed MOFs for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903875.

21

Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

22

Zhao, X. J.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem. 2018, 130, 9059–9064.

23

Wang, M.; Wang, Y. Q.; Mao, S. S.; Shen, S. H. Transition-metal alloy electrocatalysts with active sites modulated by metal-carbide heterophases for efficient oxygen evolution. Nano Energy 2021, 88, 106216.

24

Zhang, W.; Li, D. H.; Zhang, L. Z.; She, X. L.; Yang, D. J. NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J. Energy Chem. 2019, 39, 39–53.

25

Anantharaj, S.; Kundu, S.; Noda, S. “ The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

26

Chang, J. L.; Chen, L. M.; Zang, S. Q.; Wang, Y. F.; Wu, D. P.; Xu, F.; Jiang, K.; Gao, Z. Y. The effect of Fe(III) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)2 electrode. J. Colloid Interface Sci. 2020, 569, 50–56.

27

Ren, J. T.; Yuan, G. G.; Weng, C. C.; Chen, L.; Yuan, Z. Y. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 2018, 10, 10620–10628.

28

Zhong, B.; Kuang, P. Y.; Wang, L. X.; Yu, J. G. Hierarchical porous nickel supported NiFeOxHy nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Appl. Catal. B:Environ. 2021, 299, 120668.

29

Tian, G. Q.; Wei, S. R.; Guo, Z. T.; Wu, S. W.; Chen, Z. L.; Xu, F. M.; Cao, Y.; Liu, Z.; Wang, J. Q.; Ding, L. et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. J. Mater. Sci. Technol. 2021, 77, 108–116.

30

Wang, X. Q.; Wang, B.; Chen, Y. F.; Wang, M. Y.; Wu, Q.; Srinivas, K.; Yu, B.; Zhang, X. J.; Ma, F.; Zhang, W. L. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting. J. Mater. Sci. Technol. 2022, 105, 266–273.

31

Yang, D. X.; Su, Z.; Chen, Y. F.; Srinivas, K.; Gao, J. Z.; Zhang, W. L.; Wang, Z. G.; Lin, H. P. Electronic modulation of hierarchical spongy nanosheets toward efficient and stable water electrolysis. Small 2021, 17, 2006881.

32

Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.

33

Zhao, M.; Li, W.; Li, J. Y.; Hu, W. H.; Li, C. M. Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal-organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 2020, 7, 2001965.

34

Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

35

Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4679–4684.

36

Wu, X. Q.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Liu, X.; Dong, W. W.; Li, S.; Li, D. S.; Li, J. R. In situ synthesis of nano CuS-embedded MOF hierarchical structures and application in dye adsorption and hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 5698–5706.

37

Srinivas, K.; Chen, Y. F.; Wang, B.; Yu, B.; Lu, Y. J.; Su, Z.; Zhang, W. L.; Yang, D. X. Metal-organic framework-derived Fe-doped Ni3Fe/NiFe2O4 heteronanoparticle-decorated carbon nanotube network as a highly efficient and durable bifunctional electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 55782–55794.

38

Srinivas, K.; Chen, Y. F.; Wang, X. Q.; Wang, B.; Karpuraranjith, M.; Wang, W.; Su, Z.; Zhang, W. L.; Yang, D. X. Constructing Ni/NiS heteronanoparticle-embedded metal-organic framework-derived nanosheets for enhanced water-splitting catalysis. ACS Sustainable Chem. Eng. 2021, 9, 1920–1931.

39

Yang, D. X.; Su, Z.; Chen, Y. F.; Srinivas, K.; Zhang, X. J.; Zhang, W. L.; Lin, H. P. Self-reconstruction of a MOF-derived chromium-doped nickel disulfide in electrocatalytic water oxidation. Chem. Eng. J. 2022, 430, 133046.

40

Yang, D. X.; Su, Z.; Chen, Y. F.; Lu, Y. J.; Yu, B.; Srinivas, K.; Wang, B.; Zhang, W. L. Double-shelled hollow bimetallic phosphide nanospheres anchored on nitrogen-doped graphene for boosting water electrolysis. J. Mater. Chem. A 2020, 8, 22222–22229.

41

Zhu, K. Y.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.

42

Chen, J. W.; Wang, F. M.; Qi, X. P.; Yang, H.; Peng, B. J.; Xu, L.; Xiao, Z. L.; Hou, X. M.; Liang, T. X. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions. Electrochim. Acta 2019, 326, 134979.

43

Ren, C. T.; Jia, X.; Zhang, W.; Hou, D.; Xia, Z. Q.; Huang, D. S.; Hu, J.; Chen, S. P.; Gao, S. L. Hierarchical porous integrated Co1−xS/CoFe2O4@rGO nanoflowers fabricated via temperature-controlled in situ calcining sulfurization of multivariate CoFe-MOF-74@rGO for high-performance supercapacitor. Adv. Funct. Mater. 2020, 30, 2004519.

44

Yang, L. J.; Li, H.; Yu, Y.; Wu, Y.; Zhang, L. Assembled 3D MOF on 2D nanosheets for self-boosting catalytic synthesis of N-doped carbon nanotube encapsulated metallic Co electrocatalysts for overall water splitting. Appl. Catal. B:Environ. 2020, 271, 118939.

45

Abdel-Wahed, M. S.; El-Kalliny, A. S.; Badawy, M. I.; Attia, M. S.; Gad-Allah, T. A. Core double-shell MnFe2O4@rGO@TiO2 superparamagnetic photocatalyst for wastewater treatment under solar light. Chem. Eng. J. 2020, 382, 122936.

46

Wang, B.; Wang, X. Q.; Wang, Z. G.; Srinivas, K.; Zhang, X. J.; Yu, B.; Yang, D. X.; Zhang, W. L.; Lau, T. C.; Chen, Y. F. Electronic modulation of NiS-PBA/CNT with boosted water oxidation performance realized by a rapid microwave-assisted in-situ partial sulfidation. Chem. Eng. J. 2021, 420, 130481.

47

Ma, F.; Yu, B.; Zhang, X. J.; Zhang, Z. H.; Srinivas, K.; Wang, X. Q.; Liu, D. W.; Wang, B.; Zhang, W. L.; Wu, Q. et al. WN0.67-embedded N-doped graphene-nanosheet interlayer as efficient polysulfide catalyst and absorbant for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133439.

48

Lu, Y. J.; Chen, Y. F.; Srinivas, K.; Su, Z.; Wang, X. Q.; Wang, B.; Yang, D. X. Employing dual-ligand co-coordination compound to construct nanorod-like Bi-metallic (Fe, Co)P decorated with nitrogen-doped graphene for electrocatalytic overall water splitting. Electrochim. Acta 2020, 350, 136338.

49

Rui, K.; Zhao, G. Q.; Chen, Y. P.; Lin, Y.; Zhou, Q.; Chen, J. Y.; Zhu, J. X.; Sun, W. P.; Huang, W.; Dou, S. X. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1801554.

50

Kamble, R. B.; Varade, V.; Ramesh, K. P.; Prasad, V. Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles. AIP Adv. 2015, 5, 017119.

51

Sankar, K. V.; Selvan, R. K.; Meyrick, D. Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv. 2015, 5, 99959–99967.

52

Zhu, P.; Gao, J. X.; Liu, S. Facile in situ coupling CoFe/Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. J. Power Sources 2020, 449, 227512.

53

Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273.

54

Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

55

Zhang, J. F.; Jiang, Y.; Wang, Y.; Yu, C. P.; Cui, J. W.; Wu, J. J.; Shu, X.; Qin, Y. Q.; Sun, J.; Yan, J. et al. Ultrathin carbon coated mesoporous Ni-NiFe2O4 nanosheet arrays for efficient overall water splitting. Electrochim. Acta 2019, 321, 134652.

56

Li, S. S.; Sirisomboonchai, S.; Yoshida, A.; An, X. W.; Hao, X. G.; Abudula, A.; Guan, G. Q. Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density. J. Mater. Chem. A 2018, 6, 19221–19230.

57

Lei, S.; Li, Q. H.; Kang, Y.; Gu, Z. G.; Zhang, J. Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction. Appl. Catal. B:Environ. 2019, 245, 1–9.

58

Srinivas, K.; Lu, Y. J.; Chen, Y. F.; Zhang, W. L.; Yang, D. X. FeNi3-Fe3O4 heterogeneous nanoparticles anchored on 2D MOF nanosheets/1D CNT matrix as highly efficient bifunctional electrocatalysts for water splitting. ACS Sustainable Chem. Eng. 2020, 8, 3820–3831.

59

Mohanty, B.; Bhanja, P.; Jena, B. K. An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Mater. Today Energy 2022, 23, 100902.

60

Muschi, M.; Serre, C. Progress and challenges of graphene oxide/metal–organic composites. Coord. Chem. Rev. 2019, 387, 262–272.

61

Shao, Q.; Wang, P. T.; Huang, X. Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419.

62

Huang, J. W.; Li, Y. Y.; Zhang, Y. D.; Rao, G. F.; Wu, C. Y.; Hu, Y.; Wang, X. F.; Lu, R. F.; Li, Y. R.; Xiong, J. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 17458–17464.

63

Görlin, M.; de Araújo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070–2082.

64

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

65

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.

66

Li, J. W.; Song, J. D.; Huang, B. Y.; Liang, G. F.; Liang, W. L.; Huang, G. J.; Jin, Y. Q.; Zhang, H.; Xie, F. Y.; Chen, J. et al. Enhancing the oxygen evolution reaction performance of NiFeOOH electrocatalyst for Zn-air battery by N-doping. J. Catal. 2020, 389, 375–381.

67

Wang, P. Y.; Pu, Z. H.; Li, W. Q.; Zhu, J. W.; Zhang, C. T.; Zhao, Y. F.; Mu, S. C. Coupling NiSe2−Ni2P heterostructure nanowrinkles for highly efficient overall water splitting. J. Catal. 2019, 377, 600–608.

68

Fang, M.; Han, D.; Xu, W. B.; Shen, Y.; Lu, Y. M.; Cao, P. J.; Han, S.; Xu, W. Y.; Zhu, D. L.; Liu, W. J. et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 2020, 10, 2001059.

69

Chen, H. J.; Zou, Y. H.; Li, J.; Zhang, K. W.; Xia, Y. Z.; Hui, B.; Yang, D. J. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B:Environ. 2021, 293, 120215.

70

Karpuraranjith, M.; Chen, Y. F.; Wang, B.; Ramkumar, J.; Yang, D. X.; Srinivas, K.; Wang, W.; Zhang, W. L.; Manigandan, R. Hierarchical ultrathin layered MoS2@NiFe2O4 nanohybrids as a bifunctional catalyst for highly efficient oxygen evolution and organic pollutant degradation. J. Colloid Interface Sci. 2021, 592, 385–396.

71

Wang, B.; Srinivas, K.; Wang, X. Q.; Su, Z.; Yu, B.; Zhang, X. J.; Liu, Y. F.; Ma, F.; Yang, D. X.; Chen, Y. F. Self-assembled CoSe2−FeSe2 heteronanoparticles along the carbon nanotube network for boosted oxygen evolution reaction. Nanoscale 2021, 13, 9651–9658.

72

Srinivas, K.; Chen, Y. F.; Su, Z.; Yu, B.; Karpuraranjith, M.; Ma, F.; Wang, X. Q.; Zhang, W. L.; Yang, D. X. Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance. Electrochim. Acta 2022, 404, 139745.

73

Hoa, V. H.; Tran, D. T.; Nguyen, D. C.; Kim, D. H.; Kim, N. H.; Lee, J. H. Molybdenum and phosphorous dual doping in cobalt monolayer interfacial assembled cobalt nanowires for efficient overall water splitting. Adv. Funct. Mater. 2020, 30, 2002533.

74

Li, W.; Gao, X. F.; Xiong, D. H.; Xia, F.; Liu, J.; Song, W. G.; Xu, J. Y.; Thalluri, S. M.; Cerqueira, M. F.; Fu, X. L. et al. Vapor-solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chem. Sci. 2017, 8, 2952–2958.

Nano Research
Pages 5884-5894
Cite this article:
Srinivas K, Chen X, Liu D, et al. Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction. Nano Research, 2022, 15(7): 5884-5894. https://doi.org/10.1007/s12274-022-4231-8
Topics:

996

Views

17

Crossref

17

Web of Science

16

Scopus

3

CSCD

Altmetrics

Received: 15 December 2021
Revised: 08 February 2022
Accepted: 13 February 2022
Published: 11 April 2022
© Tsinghua University Press 2022
Return