Journal Home > Volume 15 , Issue 7

The development of high-efficiency electrocatalysts for overall water splitting under large current density is significant and challenging. Herein, a high-performing Fe-doped MoNi alloy catalyst (M-H-MoNiFe-50) abundant with flower-like nanorods assemblies has been prepared by high-pressure microwave reaction and hydrogen reduction. Firstly, Fe doped NiMoO4 precursor (M-MoNiFe-50) was synthesized by microwave fast heating, ensuring the robustness of nanorods, which owns larger area and improved catalytic activity than that by conventional hydrothermal method. Secondly, M-MoNiFe-50 was reduced in H2/Ar to fabricate Fe-incorporated MoNi4 alloys (M-H-MoNiFe-50), greatly enhancing the conductivity and facilitating hydrogen/oxygen spillover. The final M-H-MoNiFe-50 exhibits remarkable activity for alkaline/acidic hydrogen evolution reaction and oxygen evolution reaction with low overpotential of 208 (alkaline), 254 (acid) and 347 mV at 1,000 mA·cm−2. Moreover, an alkaline water electrolyzer is established using M-H-MoNiFe-50 as anode and cathode, generating a current density of 100 mA·cm−2 at 1.58 V with encouraging durability of 50 h at 1,000 mA·cm−2. The extraordinary water splitting performance can be chalked up to the large surface area, favorable charge transfer, modified electron distribution, intrinsic robustness as well as an efficient gas spillover of M-H-MoNiFe-50. The final electrocatalyst has great prospects for practical application and confirms the significance of Fe doping, microwave method and spillover effect for catalytic performance improvement.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Microwave-assisted molybdenum-nickel alloy for efficient water electrolysis under large current density through spillover and Fe doping

Show Author's information Ya-Nan ZhouHai-Jun LiuZhuo-Ning ShiJian-Cheng ZhouBin Dong( )Hui-Ying ZhaoFeng-Ge WangJian-Feng YuYong-Ming Chai( )
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

The development of high-efficiency electrocatalysts for overall water splitting under large current density is significant and challenging. Herein, a high-performing Fe-doped MoNi alloy catalyst (M-H-MoNiFe-50) abundant with flower-like nanorods assemblies has been prepared by high-pressure microwave reaction and hydrogen reduction. Firstly, Fe doped NiMoO4 precursor (M-MoNiFe-50) was synthesized by microwave fast heating, ensuring the robustness of nanorods, which owns larger area and improved catalytic activity than that by conventional hydrothermal method. Secondly, M-MoNiFe-50 was reduced in H2/Ar to fabricate Fe-incorporated MoNi4 alloys (M-H-MoNiFe-50), greatly enhancing the conductivity and facilitating hydrogen/oxygen spillover. The final M-H-MoNiFe-50 exhibits remarkable activity for alkaline/acidic hydrogen evolution reaction and oxygen evolution reaction with low overpotential of 208 (alkaline), 254 (acid) and 347 mV at 1,000 mA·cm−2. Moreover, an alkaline water electrolyzer is established using M-H-MoNiFe-50 as anode and cathode, generating a current density of 100 mA·cm−2 at 1.58 V with encouraging durability of 50 h at 1,000 mA·cm−2. The extraordinary water splitting performance can be chalked up to the large surface area, favorable charge transfer, modified electron distribution, intrinsic robustness as well as an efficient gas spillover of M-H-MoNiFe-50. The final electrocatalyst has great prospects for practical application and confirms the significance of Fe doping, microwave method and spillover effect for catalytic performance improvement.

Keywords: overall water splitting, spillover, high-pressure microwave, Fe doping, MoNi4

References(49)

1

Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.

2

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

3

Gao, X. Q.; Chen, Y. D.; Sun, T.; Huang, J. M.; Zhang, W.; Wang, Q.; Cao, R. Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ. Sci. 2020, 13, 174–182.

4

Zhou, Y. N.; Wang, F. L.; Dou, S. Y.; Shi, Z. N.; Dong, B.; Yu, W. L.; Zhao, H. Y.; Wang, F. G.; Yu, J. F.; Chai, Y. M. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131643.

5

Yin, J.; Jin, J.; Lu, M.; Huang, B. L.; Zhang, H.; Peng, Y.; Xi, P. X.; Yan, C. H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 2020, 142, 18378–18386.

6

Zhang, J. Y.; Yan, Y.; Mei, B. B.; Qi, R. J.; He, T.; Wang, Z. T.; Fang, W. S.; Zaman, S.; Su, Y. Q.; Ding, S. J. et al. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365–373.

7

Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

8

Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

9

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

10

Gao, X. Q.; Chen, D. D.; Qi, J.; Li, F.; Song, Y. J.; Zhang, W.; Cao, R. NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation. Small 2019, 15, 1904579.

11

Zhang, W.; Wu, Y. Z.; Qi, J.; Chen, M. X.; Cao, R. A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.

12

Highfield, J. G.; Claude, E.; Oguro, K. Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: A new model. Electrochim. Acta 1999, 44, 2805–2814.

13

Kamp, C. J.; Garza, H. H. P.; Fredriksson, H.; Kasemo, B.; Andersson, B.; Skoglundh, M. Nanofabricated catalyst particles for the investigation of catalytic carbon oxidation by oxygen spillover. Langmuir 2017, 33, 4903–4912.

14

Ananyev, M. V.; Porotnikova, N. M.; Eremin, V. A.; Kurumchin, E. K. Interaction of O2 with LSM-YSZ composite materials and oxygen spillover effect. ACS Catal. 2021, 11, 4247–4262.

15

Zhao, D. H.; Pan, Y. M.; Zang, Y. R.; Zhao, X. Z. A kinetic and quantum chemical investigation of oxygen spillover from α-Sb2O4 to MoO3. Chin. J. Catal. 1996, 17, 133–138.

16

Slocombe, D. R. Cool water splitting by microwaves. Nat. Energy 2020, 5, 830–831.

17

Zhang, H. M.; Lee, J. S. Hybrid microwave annealing synthesizes highly crystalline nanostructures for (photo)electrocatalytic water splitting. Acc. Chem. Res. 2019, 52, 3132–3142.

18

Serra, J. M.; Borrás-Morell, J. F.; García-Baños, B.; Balaguer, M.; Plaza-González, P.; Santos-Blasco, J.; Catalán-Martínez, D.; Navarrete, L.; Catalá-Civera, J. M. Hydrogen production via microwave-induced water splitting at low temperature. Nat. Energy 2020, 5, 910–919.

19

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

20

Qin, J. F.; Yang, M.; Chen, T. S.; Dong, B.; Hou, S.; Ma, X.; Zhou, Y. N.; Yang, X. L.; Nan, J.; Chai, Y. M. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 2745–2753.

21

Yan, X. X.; Gu, M. Y.; Wang, Y.; Xu, L.; Tang, Y. W.; Wu, R. B. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res. 2020, 13, 975–982.

22

Zhang, W.; Qi, J.; Liu, K. Q.; Cao, R. A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation. Adv. Energy Mater. 2016, 6, 1502489.

23

Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.

24

Hu, W. B.; Liu, Y.; Withers, R. L.; Frankcombe, T. J.; Norén, L.; Snashall, A.; Kitchin, M.; Smith, P.; Gong, B.; Chen, H. et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821–826.

25

Wang, Z.; Wang, W. Z.; Zhang, L.; Jiang, D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal. Sci. Technol. 2016, 6, 3845–3853.

26

Mao, C. L.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Loh, J. Y. Y.; Zhang, T. H.; Xia, M. K.; Xu, J.; Deng, F.; Ghoussoub, M. et al. Hydrogen spillover to oxygen vacancy of TiO2-xHy/Fe: Breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 2020, 142, 17403–17412.

27

Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.

28

Anantharaj, S.; Noda, S.; Driess, M.; Menezes, P. W. The pitfalls of using potentiodynamic polarization curves for Tafel analysis in electrocatalytic water splitting. ACS Energy Lett. 2021, 6, 1607–1611.

29

De Chialvo, M. R. G.; Chialvo, A. C. Kinetics of hydrogen evolution reaction with Frumkin adsorption: Re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes. Electrochim. Acta 1998, 44, 841–851.

30

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

31

Guan, C.; Xiao, W.; Wu, H. J.; Liu, X. M.; Zang, W. J.; Zhang, H.; Ding, J.; Feng, Y. P.; Pennycook, S. J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2018, 48, 73–80.

32

Chi, J. Q.; Zhang, X. Y.; Ma, X.; Dong, B.; Zhang, J. Q.; Guo, B. Y.; Yang, M.; Wang, L.; Chai, Y. M.; Liu, C. G. Interface charge engineering of ultrafine Ru/Ni2P nanoparticles encapsulated in N, P-codoped hollow carbon nanospheres for efficient hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 17714–17722.

33

Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Hydrogen evolution and oxidation: Mechanistic studies and material advances. Adv. Mater. 2019, 31, 1808066.

34

Yu, L.; Zhou, T. T.; Cao, S. H.; Tai, X. S.; Liu, L. L.; Wang, Y. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance. Nano Res. 2021, 14, 2659–2665.

35

Duan, Y.; Yu, Z. Y.; Hu, S. J.; Zheng, X. S.; Zhang, C. T.; Ding, H. H.; Hu, B. C.; Fu, Q. Q.; Yu, Z. L.; Zheng, X. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem., Int. Ed. 2019, 58, 15772–15777.

36

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

37

Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

38

Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79–85.

39

Wei, Z. W.; Wang, H. J.; Zhang, C.; Xu, K.; Lu, X. L.; Lu, T. B. Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 16622–16627.

40

Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-band centers endows (NixFe1−x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

41

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

42

Liu, Z. Z.; Shang, X.; Dong, B.; Chai, Y. M. Triple Ni-Co-Mo metal sulfides with one-dimensional and hierarchical nanostructures towards highly efficient hydrogen evolution reaction. J. Catal. 2018, 361, 204–213.

43

Schalenbach, M.; Speck, F. D.; Ledendecker, M.; Kasian, O.; Goehl, D.; Mingers, A. M.; Breitbach, B.; Springer, H.; Cherevko, S.; Mayrhofer, K. J. J. Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochim. Acta 2018, 259, 1154–1161.

44

Brito, J. L.; Laine, J. Reducibility of Ni-Mo/Al2O3 catalysts: A TPR study. J. Catal. 1993, 139, 540–550.

45

Shang, H. Y.; Xu, Y. Q.; Zhao, H. J.; Liu, C. G. Study of carbon nanotube supported Co-Mo HDS catalysts. J. Mol. Catal. 2004, 18, 41–46.

46

Nabaho, D.; Niemantsverdriet, J. W.; Claeys, M.; Van Steen, E. Hydrogen spillover in the Fischer-Tropsch synthesis: An analysis of platinum as a promoter for cobalt-alumina catalysts. Catal. Today 2016, 261, 17–27.

47

Yao, Y. X.; Goodman, D. W. Direct evidence of hydrogen spillover from Ni to Cu on Ni-Cu bimetallic catalysts. J. Mol. Catal. A: Chem. 2014, 383–384, 239–242.

48

Li, W. M.; Liu, H. D.; Zhang, M.; Chen, Y. F. Comparative study of mesoporous NixMn6−xCe4 composite oxides for NO catalytic oxidation. RSC Adv. 2019, 9, 31035–31042.

49

Geng, S.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W.; Li, H. B. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Res. 2020, 13, 121–126.

File
12274_2022_4230_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 November 2021
Revised: 11 February 2022
Accepted: 13 February 2022
Published: 08 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52174283) and Qingdao Science and Technology Benefiting People Special Project (No. 20-3-4-8-nsh), the Fundamental Research Funds for the Central Universities (No. 20CX02212A), the Development Fund of State Key Laboratory of Heavy Oil Processing and the Postgraduate Innovation Project of China University of Petroleum (No. YCX2020046).

Return