Journal Home > Volume 15 , Issue 7

Laser-induced assembly is a promising technology for advancing micro/nano photonic devices. However, the dynamic process and the photothermal interaction in laser-induced assembly technique, as well as the role of laser illumination pattern on the assembly structure have not been well investigated. In this paper, we prepare dark MoSe2 nanospheres with a facile solvothermal synthesis method and grow a concentric ring-shaped assembly with incident light following Fresnel circular-aperture diffraction. The impact of the illumination light filed on the structure of the assembly is investigated. The concentric ring-shaped assembly reveals focusing effect with about 4.87 times intensity amplification. Optical trap effect, photothermal effect, and tension effect are proved to synergistically enhance the trap stiffness and broaden trap region. This work gives an insight into the production of laser induced assembly, hence broadens the potential application of nanoparticles and assembly in micro-optics and photonic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Insights into the generation of laser-induced assembly of MoSe2 nanospheres

Show Author's information Gangshuo Liu1,2Zengxin Huang1,2Chao Yan1,2Shanshan Li1,2Can Xu3Lipei Song1,2( )Dengfeng Kuang1,2( )
Institute of Modern Optics, Nankai University, Tianjin 300350, China
Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
Space Engineering University, Beijing 101416, China

Abstract

Laser-induced assembly is a promising technology for advancing micro/nano photonic devices. However, the dynamic process and the photothermal interaction in laser-induced assembly technique, as well as the role of laser illumination pattern on the assembly structure have not been well investigated. In this paper, we prepare dark MoSe2 nanospheres with a facile solvothermal synthesis method and grow a concentric ring-shaped assembly with incident light following Fresnel circular-aperture diffraction. The impact of the illumination light filed on the structure of the assembly is investigated. The concentric ring-shaped assembly reveals focusing effect with about 4.87 times intensity amplification. Optical trap effect, photothermal effect, and tension effect are proved to synergistically enhance the trap stiffness and broaden trap region. This work gives an insight into the production of laser induced assembly, hence broadens the potential application of nanoparticles and assembly in micro-optics and photonic devices.

Keywords: laser-induced assembly, MoSe2 nanospheres , optical trap, photothermal interaction

References(30)

1

Albrecht, W.; Irmak, E. A.; Altantzis, T.; Pedrazo-Tardajos, A.; Skorikov, A.; Deng, T. S.; van der Hoeven, J. E. S.; van Blaaderen, A.; Van Aert, S.; Bals, S. 3D atomic-scale dynamics of laser-light-induced restructuring of nanoparticles unraveled by electron tomography. Adv. Mater. 2021, 33, 2100972.

2

Gu, D. D.; Shi, X. Y.; Poprawe, R.; Bourell, D. L.; Setchi, R.; Zhu, J. H. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 372, eabg1487.

3

Xu, Y. D.; Fei, Q. H.; Page, M.; Zhao, G. G.; Ling, Y.; Chen, D.; Yan, Z. Laser-induced graphene for bioelectronics and soft actuators. Nano Res. 2021, 14, 3033–3050.

4

Long, J.; Xiong, W.; Wei, C. Y. R.; Lu, C. C. F.; Wang, R. Q.; Deng, C. S.; Liu, H.; Fan, X. H.; Jiao, B. Z.; Gao, S. et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing. Nano Lett. 2020, 20, 5159–5166.

5

Tokonami, S.; Kurita, S.; Yoshikawa, R.; Sakurai, K.; Suehiro, T.; Yamamoto, Y.; Tamura, M.; Karthaus, O.; Iida, T. Light-induced assembly of living bacteria with honeycomb substrate. Sci. Adv. 2020, 6, eaaz5757.

6

Li, H.; Cao, Y. Y.; Zhou, L. M.; Xu, X. H.; Zhu, T. T.; Shi, Y. Z.; Qiu, C. W.; Ding, W. Q. Optical pulling forces and their applications. Adv. Opt. Photonics 2020, 12, 288–366.

7

Ueda, M.; Nishimura, Y.; Tamura, M.; Ito, S.; Tokonami, S.; Iida, T. Microflow-mediated optical assembly of nanoparticles with femtogram protein via shrinkage of light-induced bubbles. APL Photonics 2019, 4, 010802.

8

Ma, L. L.; Liu, C.; Wu, S. B.; Chen, P.; Chen, Q. M.; Qian, J. X.; Ge, S. J.; Wu, Y. H.; Hu, W.; Lu, Y. Q. Programmable self-propelling actuators enabled by a dynamic helical medium. Sci. Adv. 2021, 7, eabh3505.

9

Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

10

Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053–1059.

11

Chen, X. S.; Yang, H. H.; Liu, G. B.; Gao, F.; Dai, M. J.; Hu, Y. X.; Chen, H. Y.; Cao, W. W.; Hu, P. A.; Hu, W. P. Hollow spherical nanoshell arrays of 2D layered semiconductor for high-performance photodetector device. Adv. Funct. Mater. 2018, 28, 1705153.

12

Liu, Y. N.; Wei, C. F.; Lin, A. G.; Pan, J. L.; Chen, X.; Zhu, X. F.; Gong, Y. C.; Yuan, G. L.; Chen, L. M.; Liu, J. et al. Responsive functionalized MoSe2 nanosystem for highly efficient synergistic therapy of breast cancer. Colloid. Surf. B:Biointerfaces 2020, 189, 110820.

13

Nishimura, Y.; Nishida, K.; Yamamoto, Y.; Ito, S.; Tokonami, S.; Iida, T. Control of submillimeter phase transition by collective photothermal effect. J. Phys. Chem. C 2014, 118, 18799–18804.

14

Armon, N.; Greenberg, E.; Layani, M.; Rosen, Y. S.; Magdassi, S.; Shpaisman, H. Continuous nanoparticle assembly by a modulated photo-induced microbubble for fabrication of micrometric conductive patterns. ACS Appl. Mater. Interfaces 2017, 9, 44214–44221.

15

Yamamoto, Y.; Shimizu, E.; Nishimura, Y.; Iida, T.; Tokonami, S. Development of a rapid bacterial counting method based on photothermal assembling. Opt. Mater. Express 2016, 6, 1280–1285.

16

Yu, G. H.; Cao, A. Y.; Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2007, 2, 372–377.

17

Ghosh, S.; Ranjan, A. D.; Das, S.; Sen, R.; Roy, B.; Roy, S.; Banerjee, A. Directed self-assembly driven mesoscale lithography using laser-induced and manipulated microbubbles: Complex architectures and diverse applications. Nano Lett. 2021, 21, 10–25.

18

Liu, G. S.; Dai, S. X.; Li, P.; Zhu, B. H.; Wu, Z. K.; Gu, Y. Z. Preparation and comparison of nonlinear optical properties of MoSe2 with different types of structures. Opt. Mater. 2019, 95, 109240.

19

Cheng, Y.; Zhao, Y.; Zhao, H. Q.; Lv, H. L.; Qi, X. D.; Cao, J. M.; Ji, G. B.; Du, Y. W. Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 2019, 372, 390–398.

20

Dai, C.; Qing, E. P.; Li, Y.; Zhou, Z. X.; Yang, C.; Tian, X. K.; Wang, Y. X. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes. Nanoscale 2015, 7, 19970–19976.

21

Liu, G. S.; Dai, S. X.; Zhu, B. H.; Li, P.; Wu, Z. K.; Gu, Y. Z. Third-order nonlinear optical properties of MoSe2/graphene composite materials. Opt. Laser Technol. 2019, 120, 105746.

22

Shan, X. C.; Wang, F.; Wang, D. J.; Wen, S. H.; Chen, C. H.; Di, X. J.; Nie, P.; Liao, J. Y.; Liu, Y. T.; Ding, L. et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat. Nanotechnol. 2021, 16, 531–537.

23

Sudhakar, S.; Abdosamadi, M. K.; Jachowski, T. J.; Bugiel, M.; Jannasch, A.; Schäffer, E. Germanium nanospheres for ultraresolution picotensiometry of kinesin motors. Science 2021, 371, eabd9944.

24

Lauterborn, W.; Kurz, T. Physics of bubble oscillations. Rep. Prog. Phys. 2010, 73, 106501.

25

Wang, P.; Xu, Y. G.; Wang, W.; Wang, Z. J. Analytic expression for Fresnel diffraction. J. Opt. Soc. Am. A 1998, 15, 684–688.

26

Juan, M. L.; Righini, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356.

27

Braun, M.; Bregulla, A. P.; Günther, K.; Mertig, M.; Cichos, F. Single molecules trapped by dynamic inhomogeneous temperature fields. Nano Lett. 2015, 15, 5499–5505.

28

Zhang, Y. Q.; Min, C. J.; Dou, X. J.; Wang, X. Y.; Urbach, H. P.; Somekh, M. G.; Yuan, X. C. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light:Sci. Appl. 2021, 10, 59.

29

Ndukaife, J. C.; Xuan, Y.; Nnanna, A. G. A.; Kildishev, A. V.; Shalaev, V. M.; Wereley, S. T.; Boltasseva, A. High-resolution large-ensemble nanoparticle trapping with multifunctional thermoplasmonic nanohole metasurface. ACS Nano 2018, 12, 5376–5384.

30

Wei, W.; Huang, J.; Li, W.; Peng, H. Y.; Li, S. Impacts of ethanol and water adsorptions on thermal conductivity of ZIF-8. J. Phys. Chem. C 2019, 123, 27369–27374.

Video
12274_2022_4229_MOESM2_ESM.mp4
12274_2022_4229_MOESM3_ESM.mp4
12274_2022_4229_MOESM4_ESM.mp4
File
12274_2022_4229_MOESM1_ESM.pdf (405.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 November 2021
Revised: 24 January 2022
Accepted: 13 February 2022
Published: 19 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The research was funded by Natural Science Foundation of Tianjin City (No. 18JCZDJC38200), and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63201178)

Return