Journal Home > Volume 15 , Issue 7

Ni modification is considered as an efficient strategy for boosting the performance of Pt towards alkaline hydrogen oxidation reaction (HOR), yet its specific role is largely undecoded. Here, ultrathin Pt nanowires (NWs) are selected as models for revealing the significance of Ni modification on HOR by precisely positioning Ni on distinct positions of Pt NWs. Ni solely influences the electronic properties of Pt and thus weakens *H adsorption when it is located in the core of PtNi alloyed NWs, leading to a moderate improvement of alkaline HOR activity. When Ni is distributed in both core and surface of PtNi alloyed NWs, Ni strongly weakens *H adsorption but strengthens *OH adsorption. On the other hand, the electronic properties of Pt are hardly influenced when Ni is deposited on the surface of Pt NWs, on which the strong *H and *OH adsorptions lead to the improved HOR activity. This work reveals the significance of Ni modification on HOR, but also promotes the fundamental researches on catalyst design for fuel cell reactions and beyond.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The exclusive surface and electronic effects of Ni on promoting the activity of Pt towards alkaline hydrogen oxidation

Show Author's information Kuncan Wang1,§Hao Yang2,§Juntao Zhang1Guomian Ren3Tao Cheng2Yong Xu3( )Xiaoqing Huang1( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

§ Kuncan Wang and Hao Yang contributed equally to this work.

Abstract

Ni modification is considered as an efficient strategy for boosting the performance of Pt towards alkaline hydrogen oxidation reaction (HOR), yet its specific role is largely undecoded. Here, ultrathin Pt nanowires (NWs) are selected as models for revealing the significance of Ni modification on HOR by precisely positioning Ni on distinct positions of Pt NWs. Ni solely influences the electronic properties of Pt and thus weakens *H adsorption when it is located in the core of PtNi alloyed NWs, leading to a moderate improvement of alkaline HOR activity. When Ni is distributed in both core and surface of PtNi alloyed NWs, Ni strongly weakens *H adsorption but strengthens *OH adsorption. On the other hand, the electronic properties of Pt are hardly influenced when Ni is deposited on the surface of Pt NWs, on which the strong *H and *OH adsorptions lead to the improved HOR activity. This work reveals the significance of Ni modification on HOR, but also promotes the fundamental researches on catalyst design for fuel cell reactions and beyond.

Keywords: electronic property, ultrathin Pt nanowire, surface decoration, Ni location, hydrogen oxidation reaction

References(41)

1

An, L. L.; Zhao, X.; Zhao, T. H.; Wang, D. L. Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy Environ. Sci. 2021, 14, 2620–2638.

2

Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

3

Song, J. D.; Jin, Y. Q.; Zhang, L.; Dong, P. Y.; Li, J. W.; Xie, F. Y.; Zhang, H.; Chen, J.; Jin, Y. S.; Meng, H. et al. Phase-separated Mo-Ni alloy for hydrogen oxidation and evolution reactions with high activity and enhanced stability. Adv. Energy Mater. 2021, 11, 2003511.

4

Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

5

Wang, H. S.; Abruña, H. D. Rh and Rh alloy nanoparticles as highly active H2 oxidation catalysts for alkaline fuel cells. ACS Catal. 2019, 9, 5057–5062.

6

Zhao, Z. P.; Liu, H. Y.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

7

Alia, S. M.; Pivovar, B. S.; Yan, Y. S. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J. Am. Chem. Soc. 2013, 135, 13473–13478.

8

Shi, G.; Yano, H.; Tryk, D. A.; Iiyama, A.; Uchida, H. Highly active, CO-tolerant, and robust hydrogen anode catalysts: Pt-M (M = Fe, Co, Ni) alloys with stabilized Pt-skin layers. ACS Catal. 2017, 7, 267–274.

9

McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

10

Ghoshal, S.; Jia, Q. Y.; Bates, M. K.; Li, J. K.; Xu, C. C.; Gath, K.; Yang, J.; Waldecker, J.; Che, H. Y.; Liang, W. T. et al. Tuning Nb–Pt interactions to facilitate fuel cell electrocatalysis. ACS Catal. 2017, 7, 4936–4946.

11

Shen, L. F.; Lu, B. A.; Qu, X. M.; Ye, J. Y.; Zhang, J. M.; Yin, S. H.; Wu, Q. H.; Wang, R. X.; Shen, S. Y.; Sheng, T. et al. Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media? Nano Energy 2019, 62, 601–609.

12

Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156–5163.

13

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

14

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

15

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

16

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

17

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

18

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

19

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

20

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

21

Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.

22
Jin, Y.; Zhang, Z.; Yang, H.; Wang, P. T.; Shen, C. Q.; Cheng, T.; Huang, X. Q.; Shao, Q. Boosting hydrogen production with ultralow working voltage by selenium vacancy-enhanced ultrafine platinum-nickel nanowires. SmartMat, in press, https://doi.org/10.1002/smm2.1083.
23

Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.

24

Zhao, T. H.; Wang, G. J.; Gong, M. X.; Xiao, D. D.; Chen, Y.; Shen, T.; Lu, Y.; Zhang, J.; Xin, H. L.; Li, Q. et al. Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction. ACS Catal. 2020, 10, 15207–15216.

25

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

26

Zhao, T. H.; Hu, Y. C.; Gong, M. X.; Lin, R. Q.; Deng, S. F.; Lu, Y.; Liu, X. P.; Chen, Y.; Shen, T.; Hu, Y. Z. et al. Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis. Nano Energy 2020, 74, 104877.

27

Scofield, M. E.; Zhou, Y. C.; Yue, S. Y.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M. B.; Adzic, R. R.; Wong, S. S. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catal. 2016, 6, 3895–3908.

28

Wu, J.; Zhou, Y. J.; Nie, H. D.; Wei, K. Q.; Huang, H.; Liao, F.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. J. Energy Chem. 2022, 66, 61–67.

29

Chen, H. Q.; Wang, G. J.; Gao, T. Y.; Chen, Y. H.; Liao, H. G.; Guo, X. L.; Li, H. Y.; Liu, R. H.; Dou, M.; Nan, S. F. et al. Effect of atomic ordering transformation of PtNi nanoparticles on alkaline hydrogen evolution: Unexpected superior activity of the disordered phase. J. Phys. Chem. C 2020, 124, 5036–5045.

30

Zhu, S. Q.; Qin, X. P.; Xiao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

31

Chen, G. G.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

32

Zhang, C.; Chen, B. H.; Mei, D. H.; Liang, X. The OH--driven synthesis of Pt-Ni nanocatalysts with atomic segregation for alkaline hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 5475–5481.

33

Gao, S.; Yang, X. X.; Liang, S.; Wang, Y. H.; Zang, H. Y.; Li, Y. G. One step synthesis of PtNi electrocatalyst for methanol oxidation. Inorg. Chem. Commun. 2019, 106, 104–110.

34

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

35

Duan, Y.; Yu, Z. Y.; Yang, L.; Zheng, L. R.; Zhang, C. T.; Yang, X. T.; Gao, F. Y.; Zhang, X. L.; Yu, X. X.; Liu, R. et al. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 2020, 11, 4789.

36

Zhuang, Z. B.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. S. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 2016, 7, 10141.

37

Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

38

Xue, Y. R.; Shi, L.; Liu, X. R.; Fang, J. J.; Wang, X. D.; Setzler, B. P.; Zhu, W.; Yan, Y. S.; Zhuang, Z. B. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651.

39

Qin, S.; Duan, Y.; Zhang, X. L.; Zheng, L. R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Liu, R.; Yang, Y.; Zheng, X. S. et al. Ternary nickel-tungsten-copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nat. Commun. 2021, 12, 2686.

40

Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

41

Yakovina, O. A.; Lisitsyn, A. S. Probing the H2-induced restructuring of Pt nanoclusters by H2-TPD. Langmuir 2016, 32, 12013–12021.

File
12274_2022_4228_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 January 2022
Revised: 10 February 2022
Accepted: 11 February 2022
Published: 08 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the financial supports by the National Key R&D Program of China (No. 2020YFB1505802), the Ministry of Science and Technology of China (Nos. 2017YFA0208200, and 2016YFA0204100), the National Natural Science Foundation of China (Nos. 22025108, 22121001 and 51802206), Guangdong Provincial Natural Science Fund for Distinguished Young Scholars (No. 2021B1515020081), and Start-up Supports from Xiamen University and Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices (No. 20195010002).

Return