Journal Home > Volume 15 , Issue 7

Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling, undesired disproportionation reactions, and energy-intensive purification of products. Herein, we report a heterogeneous 0.5Ruδ+/ZrO2 catalyst with partially charged single-atom Ru (0.5 wt.% Ru) supported on commercial ZrO2 nanocrystals synthesized by the simple impregnation method followed by H2 reduction. When used in the ethylene hydrosilylation with triethoxysilane to produce the desired ethyltriethoxysilane, 0.5Ruδ+/ZrO2 showed excellent catalytic performance with the maximum Ru atom utilization and good recyclability, even superior to homogeneous catalyst (RuCl3·H2O). Structural characterizations and density functional theory calculations reveal the atomic dispersion of the active Ru species and their unique electronic properties distinct from the homogeneous catalyst. The reaction route over this catalyst is supposed to follow the typical Chalk–Harrod mechanism. This highly efficient and supported single-atom Ru catalyst has the potential to replace the current homogeneous catalyst for a greener hydrosilylation industry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Partially charged single-atom Ru supported on ZrO2 nanocrystals for highly efficient ethylene hydrosilylation with triethoxysilane

Show Author's information Mingyan Li1,2,§Shu Zhao3,§Jing Li2,§Xiao Chen4Yongjun Ji5( )Haijun Yu3Dingrong Bai1,6Guangwen Xu1,6( )Ziyi Zhong7,8Fabing Su2,6( )
Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Faculty of Materials and Manufacturing, Institute of Advanced Battery Materials and Devices, Beijing University of Technology, Beijing 100124, China
Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing 100084, China
School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang 110142, China
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China
Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel

§ Mingyan Li, Shu Zhao, and Jing Li contributed equally to this work.

Abstract

Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling, undesired disproportionation reactions, and energy-intensive purification of products. Herein, we report a heterogeneous 0.5Ruδ+/ZrO2 catalyst with partially charged single-atom Ru (0.5 wt.% Ru) supported on commercial ZrO2 nanocrystals synthesized by the simple impregnation method followed by H2 reduction. When used in the ethylene hydrosilylation with triethoxysilane to produce the desired ethyltriethoxysilane, 0.5Ruδ+/ZrO2 showed excellent catalytic performance with the maximum Ru atom utilization and good recyclability, even superior to homogeneous catalyst (RuCl3·H2O). Structural characterizations and density functional theory calculations reveal the atomic dispersion of the active Ru species and their unique electronic properties distinct from the homogeneous catalyst. The reaction route over this catalyst is supposed to follow the typical Chalk–Harrod mechanism. This highly efficient and supported single-atom Ru catalyst has the potential to replace the current homogeneous catalyst for a greener hydrosilylation industry.

Keywords: high performance, heterogeneous catalysts, single-atom Ru, hydrosilylation reaction

References(63)

1

Marciniec, B. Catalysis by transition metal complexes of alkene silylation-recent progress and mechanistic implications. Coord. Chem. Rev. 2005, 249, 2374–2390.

2

Liu, L.; Li, X. N.; Dong, H.; Wu, C. Hydrosilylation reaction of ethylene with triethoxysilane catalyzed by ruthenium halides and promoted by cuprous halides. J. Organomet. Chem. 2013, 745–746, 454–459.

3

Nakajima, Y.; Shimada, S. Hydrosilylation reaction of olefins: Recent advances and perspectives. RSC Adv. 2015, 5, 20603–20616.

4

Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J. Am. Chem. Soc. 1957, 79, 974–979.

5
Karstedt, B. Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes. U. S. Patent 3, 775, 452, November 27, 1973.
6

Hilal, H. S.; Khalaf, S.; Jondi, W. Cluster versus non-cluster catalysis in olefin thermal isomerization and hydrosilylation in the presence of Ru3(CO)12. J. Organomet. Chem. 1993, 452, 167–173.

7

Tanaka, M.; Hayashi, T.; Mi, Z. Y. Ruthenium complex-catalyzed hydrosilylation of allyl chloride with trimethoxysilane. J. Mol. Catal. 1993, 81, 207–214.

8

Chalk, A. J. The hydrosilation of olefins catalzed by some rhodium and cobalt complexes. J. Organomet. Chem. 1970, 21, 207–213.

9

Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567–570.

10

Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204–206.

11

Ciriminna, R.; Pandarus, V.; Gingras, G.; Béland, F.; Pagliaro, M. Closing the organosilicon synthetic cycle: Efficient heterogeneous hydrosilylation of alkenes over SiliaCat Pt(0). ACS Sustainable Chem. Eng. 2013, 1, 249–253.

12

Jawale, D. V.; Geertsen, V.; Miserque, F.; Berthault, P.; Gravel, E.; Doris, E. Solvent-free hydrosilylation of alkenes and alkynes using recyclable platinum on carbon nanotubes. Green Chem. 2021, 23, 815–820.

13

Bandari, R.; Buchmeiser, M. R. Polymeric monolith supported Pt-nanoparticles as ligand-free catalysts for olefinhydrosilylation under batch and continuous conditions. Catal. Sci. Technol. 2012, 2, 220–226.

14

Polizzi, C.; Caporusso, A. M.; Vitulli, G.; Salvadori, P.; Pasero, M. Supported platinum atoms derived catalysts in the hydrosilylation of unsaturated substrates. J. Mol. Catal. 1994, 91, 83–90.

15

Marciniec, B.; Maciejewski, H.; Duczmal, W.; Fiedorow, R.; Kityński, D. Kinetics and mechanism of the reaction of allyl chloride with trichlorosilane catalyzed by carbon-supported platinum. Appl. Organomet. Chem. 2003, 17, 127–134.

16

Jiang, Y. N.; Zeng, J. H.; Yang, Y.; Liu, Z. K.; Chen, J. J.; Li, D. C.; Chen, L.; Zhan, Z. P. A conjugated microporous polymer as a recyclable heterogeneous ligand for highly efficient regioselective hydrosilylation of allenes. Chem. Commun. 2020, 56, 1597–1600.

17

Chauhan, M.; Hauck, B. J.; Keller, L. P.; Boudjouk, P. Hydrosilylation of alkynes catalyzed by platinum on carbon. J. Organomet. Chem. 2002, 645, 1–3.

18

Jiménez, R.; López, J. M.; Cervantes, J. Metal supported catalysts obtained by sol-gel in the hydrosilylation of phenylacetylene with R3SiH organosilanes (R3 = Ph3, Ph2Me, and PhMe2). Can. J. Chem. 2000, 78, 1491–1495.

19

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

20

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

21

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

22

Gao, P.; Liang, G. F.; Ru, T.; Liu, X. Y.; Qi, H. F.; Wang, A. Q.; Chen, F. E. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 2021, 12, 4698.

23

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

24

Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

25

Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 2017, 7, 3147–3151.

26

Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 2018, 11, 2544–2552.

27

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

28

Cui, X. J.; Junge, K.; Dai, X. C.; Kreyenschulte, C.; Pohl, M. M.; Wohlrab, S.; Shi, F.; Brückner, A.; Beller, M. Synthesis of single atom based heterogeneous platinum catalysts: High selectivity and activity for hydrosilylation reactions. ACS Cent. Sci. 2017, 3, 580–585.

29

Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

30

Wang, J.; Fang, W. H.; Hu, Y.; Zhang, Y. H.; Dang, J. Q.; Wu, Y.; Chen, B. Z.; Zhao, H.; Li, Z. X. Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B 2021, 298, 120490.

31

Wang, X. Y.; Li, L. L.; Fang, Z. P.; Zhang, Y. F.; Ni, J.; Lin, B. Y.; Zheng, L. R.; Au, C. T.; Jiang, L. L. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 2020, 10, 9504–9514.

32

Li, X. Y.; Han, Y. J.; Huang, Y. K.; Lin, J.; Pan, X. L.; Zhao, Z.; Zhou, Y. L.; Wang, H.; Yang, X. F.; Wang, A. Q. et al. Hydrogenated TiO2 supported Ru for selective methanation of CO in practical conditions. Appl. Catal. B 2021, 298, 120597.

33

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

34

Jing, Y. X.; Wang, Y. Q.; Furukawa, S.; Xia, J.; Sun, C. Y.; Hülsey, M. J.; Wang, H. F.; Guo, Y.; Liu, X. H.; Yan, N. Towards the circular economy: Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew. Chem., Int. Ed. 2021, 60, 5527–5535.

35

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004–10011.

36

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

37

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

38

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

39

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

40

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

41

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.

42

Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys. :Condens. Matter 1997, 9, 767–808.

43

Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514–17526.

44
Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations. Berne, B. J., Ed.; Sinqapore: World Scientific, 1998; pp 385–404.
45

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

46

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

47

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

48

Ftouni, J.; Muñoz-Murillo, A.; Goryachev, A.; Hofmann, J. P.; Hensen, E. J. M.; Lu, L.; Kiely, C. J.; Bruijnincx, P. C. A.; Weckhuysen, B. M. ZrO2 Is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone. ACS Catal. 2016, 6, 5462–5472.

49
Hernández, W. Y.; Centeno, M. A.; Ivanova, S.; Eloy, P.; Gaigneaux, E. M.; Odriozola, J. A. Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions. Appl. Catal. B 2012, 123–124, 27–35.
50

Mo, S. P.; Li, S. D.; Li, W. H.; Li, J. Q.; Chen, J. Y.; Chen, Y. F. Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. J. Mater. Chem. A 2016, 4, 8113–8122.

51

Bian, Z. F.; Chan, Y. M.; Yu, Y.; Kawi, S. Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study. Catal. Today 2020, 347, 31–38.

52

Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

53

Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended x-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

54

Wang, S. Z.; Zhang, K. L.; Li, H. L.; Xiao, L. P.; Song, G. Y. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat. Commun. 2021, 12, 416.

55

Liu, L.; Li, X.; Ma, Y.; Wu, C.; Han, G. Selective catalytic hydrosilylation of ethylene. Preparation of ethyltrimethoxysilane by H2O promoted RuCl3·3H2O catalyst. Kinet. Catal. 2020, 61, 414–420.

56

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

57

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

58

Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013–6047.

59

Liu, X. Y.; Ye, S.; Lan, G. J.; Su, P. P.; Zhang, X. L.; Price, C. A. H.; Li, Y.; Liu, J. Atomic pyridinic nitrogen sites promoting levulinic acid hydrogenations over double-shelled hollow Ru/C nanoreactors. Small 2021, 17, 2101271.

60
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, DOI: 10.1016/j.apmate.2021.10.004.
61

Osseo-Asare, K.; Arriagada, F. J. Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf. 1990, 50, 321–339.

62

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

63

Chalk, A. J.; Harrod, J. F. Reactions between dicobalt octacarbonyl and silicon hydrides. J. Am. Chem. Soc. 1965, 87, 1133–1135.

File
12274_2022_4227_MOESM1_ESM.pdf (7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 January 2022
Revised: 10 February 2022
Accepted: 11 February 2022
Published: 13 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22002004). Y. J. J. thanks the financial supports from the Outstanding Youth Cultivation Program of Beijing Technology and Business University (No. 19008021144), and Research Foundation for Advanced Talents of Beijing Technology and Business University (No. 19008020159). Z. Y. Z. thanks the financial support of Guangdong Key discipline fund for this collaboration.

Return