Journal Home > Volume 15 , Issue 7

Carbon-based materials with tunable properties have emerged as promising candidates to replace Pt-based catalysts for accelerating oxygen reduction reaction (ORR) in fuel cells or metal-air batteries. In this work, we constructed a carbon hybrid which consists of one-dimensional (1D) carbon nanotubes and flake-like carbons by pyrolysis of leaf-like metal-organic frameworks. The optimal hybrid electrocatalyst of Fe7%-L-CNT-900 possesses the desired features for ORR, including active Fe species, high degree of graphitization, large specific surface area, and hierarchical porous structures. Consequently, Fe7%-L-CNT-900 performs a high electrocatalytic activity for ORR with a half-wave potential of 0.88 V, which is comparable to that of Pt/C (20 wt.%). This strategy provides an insight into the investigation of highly efficient and low-cost composite electrocatalyst for oxygen reduction reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of Fe-doped carbon hybrid composed of CNT/flake-like carbon for catalyzing oxygen reduction

Show Author's information Fangfang Tang1Wei Xia1Hongjuan Zhang1Lingling Zheng1Yingji Zhao1,2,3Jianping Ge1,4( )Jing Tang1,2,4( )
School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
Department of Nanoscience and Nanoengineering, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169–8555, Japan
JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku, Tokyo 169–0051, Japan
Institute of Eco-Chongming, Shanghai 202162, China

Abstract

Carbon-based materials with tunable properties have emerged as promising candidates to replace Pt-based catalysts for accelerating oxygen reduction reaction (ORR) in fuel cells or metal-air batteries. In this work, we constructed a carbon hybrid which consists of one-dimensional (1D) carbon nanotubes and flake-like carbons by pyrolysis of leaf-like metal-organic frameworks. The optimal hybrid electrocatalyst of Fe7%-L-CNT-900 possesses the desired features for ORR, including active Fe species, high degree of graphitization, large specific surface area, and hierarchical porous structures. Consequently, Fe7%-L-CNT-900 performs a high electrocatalytic activity for ORR with a half-wave potential of 0.88 V, which is comparable to that of Pt/C (20 wt.%). This strategy provides an insight into the investigation of highly efficient and low-cost composite electrocatalyst for oxygen reduction reaction.

Keywords: oxygen reduction reaction, metal-organic frameworks, electrocatalyst, porous carbon/CNT composites, Fe-based active sites

References(53)

1

Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

2

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

3

Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

4

Feng, T. T.; Zhang, M. N. A mixed-ion strategy to construct CNT-decorated Co/N-doped hollow carbon for enhanced oxygen reduction. Chem. Commun. 2018, 54, 11570–11573.

5

Wang, C.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.

6

Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.

7

Amali, A. J.; Sun, J. K.; Xu, Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem. Commun. 2014, 50, 1519–1522.

8

Torad, N. L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 2013, 49, 2521–2523.

9

Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602.

10

Wang, X.; Zhang, H.; Lin, H.; Gupta, S.; Wang, C.; Tao, Z.; Fu, H.; Wang, T.; Zheng, J; Wu, G. et al. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy 2016, 25, 110–119.

11

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

12

Ahmad, N.; Younus, H. A.; Chughtai, A. H.; Van Hecke, K.; Khattak, Z. A. K.; Zhang, G. K.; Danish, M.; Verpoort, F. Synthesis of 2D MOF having potential for efficient dye adsorption and catalytic applications. Catal. Sci. Technol. 2018, 8, 4010–4017.

13

Low, Z. X.; Yao, J. F.; Liu, Q.; He, M.; Wang, Z. Y.; Suresh, A. K.; Bellare, J.; Wang, H. T. Crystal transformation in zeolitic-imidazolate framework. Cryst. Growth Des. 2014, 14, 6589–6598.

14

Li, J. J.; Xia, W.; Tang, J.; Tan, H. B.; Wang, J. Y.; Kaneti, Y. V.; Bando, Y.; Wang, T.; He, J. P.; Yamauchi, Y. MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co-Nx/C electrocatalysts for oxygen reduction. Nanoscale Horiz. 2019, 4, 1006–1013.

15

Li, J. J.; Xia, W.; Wang, T.; Zheng, L. R.; Lai, Y.; Pan, J. J.; Jiang, C.; Song, L.; Wang, M. Y.; Zhang, H. T. et al. A facile route for constructing effective Cu-Nx active sites for oxygen reduction reaction. Chem. Eur. J. 2020, 26, 4070–4079.

16

Wang, W.; Yang, K.; Gaillard, J.; Bandaru, P. R.; Rao, A. M. Rational synthesis of helically coiled carbon nanowires and nanotubes through the use of tin and indium catalysts. Adv. Mater. 2008, 20, 179–182.

17

Brown, B.; Parker, C. B.; Stoner, B. R.; Glass, J. T. Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 2011, 49, 266–274.

18

Hutchison, J. L.; Kiselev, N. A.; Krinichnaya, E. P.; Krestinin, A. V.; Loutfy, R. O.; Morawsky, A. P.; Muradyan, V. E.; Obraztsova, E. D.; Sloan, J.; Terekhov, S. V. et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001, 39, 761–770.

19

Jia, Z. R.; Kou, K. C.; Qin, M.; Wu, H. J.; Puleo, F.; Liotta, L. F. Controllable and large-scale synthesis of carbon nanostructures: A review on bamboo-like nanotubes. Catalysts 2017, 7, 256.

20

Yu, L.; Yi, Q. F.; Yang, X. K.; Li, G. A facile synthesis of C-N hollow nanotubes as high electroactivity catalysts of oxygen reduction reaction derived from dicyandiamide. ChemistrySelect 2018, 3, 12603–12612.

21

Zhao, X. J.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem., Int. Ed. 2018, 130, 9059–9064.

22

Vikkisk, M.; Kruusenberg, I.; Ratso, S.; Joost, U.; Shulga, E.; Kink, I.; Rauwel, P.; Tammeveski, K. Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv. 2015, 5, 59495–59505.

23

Su, H. X.; Zhou, S. C.; Zhang, X.; Sun, H.; Zhang, H. S.; Xiao, Y.; Yu, K. M.; Dong, Z.; Dai, X. P.; Huang, X. L. Metal-organic frameworks-derived core-shell Fe3O4/Fe3N@graphite carbon nanocomposites as excellent non-precious metal electrocatalyst for oxygen reduction. Dalton Trans. 2018, 47, 16567–16577.

24

Zhou, S. C.; Zhou, Q. X.; Su, H. X.; Wang, Y.; Dong, Z.; Dai, X. P.; Zhang, X. Hybrid of Fe3C@N, S Co-doped carbon nanotubes coated porous carbon derived from metal organic frameworks as an efficient catalyst towards oxygen reduction. J. Colloid Interface Sci. 2019, 533, 311–318.

25

Chen, Y. C.; Gokhale, R.; Serov A.; Artyushkova, K.; Atanassov, P. Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis. Nano Energy 2017, 38, 201–209.

26

Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824–2832.

27

Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

28

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

29

Jin, H. H.; Zhou, H.; Li, W. Q.; Wang, Z. H.; Yang, J. L.; Xiong, Y. L.; He, D. P.; Chen, L.; Mu, S. C. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2018, 6, 20093–20099.

30

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

31

Esconjauregui, S.; Whelan, C. M.; Maex, K. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 2009, 47, 659–669.

32

Weisweiler, W.; Subramanian, N.; Terwiesch, B. Catalytic influence of metal melts on the graphitization of monolithic glasslike carbon. Carbon 1971, 9, 755–761.

33

Walker Jun, P. L.; Imperial, G. Structure of graphites: Graphitic character of Kish. Nature 1957, 180, 1185.

34

Sajitha, E. P.; Prasad, V.; Subramanyam, S. V.; Eto, S.; Takai, K.; Enoki, T. Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon. Carbon 2004, 42, 2815–2820.

35

Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

36

Aijaz, A.; Masa, J.; Rösler, C.; Antoni, H.; Fischer, R. A.; Schuhmann, W.; Muhler, M. MOF-templated assembly approach for Fe3C nanoparticles encapsulated in bamboo-like N-doped CNTs: Highly efficient oxygen reduction under acidic and basic conditions. Chem. Eur. J. 2017, 23, 12125–12130.

37

Ren, G. Y.; Lu, X. Y.; Li, Y. N.; Zhu, Y.; Dai, L. M.; Jiang, L. Porous core-shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 4118–4125.

38

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

39

Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.

40

Xia, W.; Tang, J.; Li, J. J.; Zhang, S. H.; Wu, K. C. W.; He, J. P.; Yamauchi, Y. Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 13354–13359.

41

Wang, N.; Lu, B. Z.; Li, L. G.; Niu, W. H.; Tang, Z. H.; Kang, X. W.; Chen, S. W. Graphitic nitrogen is responsible for oxygen electroreduction on nitrogen-doped carbons in alkaline electrolytes: Insights from activity attenuation studies and theoretical calculations. ACS Catal. 2018, 8, 6827–6836.

42

Wang, Q. C.; Ji, Y. J.; Lei, Y. P.; Wang, Y. B.; Wang, Y. D.; Li, Y. Y.; Wang, S. Y. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 2018, 3, 1183–1191.

43

Kurak, K. A.; Anderson, A. B. Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J. Phys. Chem. C 2009, 113, 6730–6734.

44

Guo, J. H.; Zhang, S. L.; Zheng, M. X.; Tang, J.; Liu, L.; Chen, J. M.; Wang, X. C. Graphitic-N-rich N-doped graphene as a high performance catalyst for oxygen reduction reaction in alkaline solution. Int. J. Hydrog. Energy 2020, 45, 32402–32412.

45

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

46

Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.

47

Arrigo, R.; Hävecker, M.; Schlögl, R.; Su, D. S. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem. Commun. 2008, 44, 4891–4893.

48

Tan, H.; Tang, J.; Henzie, J.; Li, Y. Q.; Xu, X. T.; Chen, T.; Wang, Z. L.; Wang, J. Y.; Ide, Y.; Bando, Y. et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 2018, 12, 5674–5683.

49

Zhang, J. T.; Zhang, M.; Qiu, L. X.; Zeng, Y.; Chen, J. S.; Zhu, C. Z.; Yu, Y.; Zhu, Z. H. Three-dimensional interconnected core-shell networks with Ni(Fe)OOH and M-N-C active species together as high-efficiency oxygen catalysts for rechargeable Zn-air batteries. J. Mater. Chem. A 2019, 7, 19045–19059.

50

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.

51

Zhong, Z. X.; Yao, J. F.; Low, Z. X.; Chen, R. Z.; He, M.; Wang, H. T. Carbon composite membrane derived from a two-dimensional zeolitic imidazolate framework and its gas separation properties. Carbon 2014, 72, 242–249.

52

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

53

Wei, X. Q.; Song, S. J.; Wu, N. N.; Luo, X.; Zheng, L. R.; Jiao, L.; Wang, H. J.; Fang, Q.; Hu, L. Y.; Gu, W. L. et al. Synergistically enhanced single-atomic site Fe by Fe3C@C for boosted oxygen reduction in neutral electrolyte. Nano Energy 2021, 84, 105840.

File
12274_2022_4223_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 September 2021
Revised: 08 February 2022
Accepted: 10 February 2022
Published: 18 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 22005099). This work was partly sponsored by Shanghai Pujiang Program (No. 19PJ1402500) and Fundamental Research Funds for the Central Universities.

Return