Journal Home > Volume 15 , Issue 5

Dehydro-Diels–Alder (DDA) reaction is a textbook reaction for preparing six-membered rings in solution but is scarcely seen in solid-state synthesis. In this work, using multiple characterization techniques, we demonstrate that the bowl-shaped clusters C18Te3Br4(Bu-O)6 might experience a DDA reaction at room temperature and high pressure between 5.5 and 7.4 GPa. Above 17.0 GPa, it is found that the bonding conversion from the intramolecular sp2 to the intermolecular sp3 occurred, in the form of pressure-induced diamondization. The recovered samples from 20.0 and 36.1 GPa showed incomplete reversibility, while the decompression-induced graphitization of glassy carbon was observed during decompression from 46.5 GPa. The electrochemical impedance spectroscopy results indicated that the transport properties changed from grain boundary dominant to grain dominant due to the DDA reaction and the grain boundary effect disappeared as the intermolecular sp3 bonding building-up and carrier transmission channel formation above 17.0 GPa. The results in this study open a new route to construct the crystalline carbon materials with different transport properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dehydro-Diels–Alder reaction and diamondization of bowl-shaped clusters C18Te3Br4(Bu-O)6

Show Author's information Jinbo Zhang1,2Manli Ma1Rong Zhou1Hongqiang Chu1Xue Wang1Shaojie Wang2Huhu Tian3,4Zhipeng Yan5Mingtao Li6Zhongyan Wu7Bin Li7Jiafeng Yan7Lan Anh Thi Nguyen7Rongxing Cao1Guoqing Wu1Xianghua Zeng1Hao-Li Zhang3( )Jaeyong Kim7( )Lin Wang2( )Yongjun Tian2
College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
Baotou Research Institute of Rare Earths, Baotou 014000, China
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
Department of Physics, and High Pressure Research Center, Hanyang University, Seoul 04763, Republic of Korea

Abstract

Dehydro-Diels–Alder (DDA) reaction is a textbook reaction for preparing six-membered rings in solution but is scarcely seen in solid-state synthesis. In this work, using multiple characterization techniques, we demonstrate that the bowl-shaped clusters C18Te3Br4(Bu-O)6 might experience a DDA reaction at room temperature and high pressure between 5.5 and 7.4 GPa. Above 17.0 GPa, it is found that the bonding conversion from the intramolecular sp2 to the intermolecular sp3 occurred, in the form of pressure-induced diamondization. The recovered samples from 20.0 and 36.1 GPa showed incomplete reversibility, while the decompression-induced graphitization of glassy carbon was observed during decompression from 46.5 GPa. The electrochemical impedance spectroscopy results indicated that the transport properties changed from grain boundary dominant to grain dominant due to the DDA reaction and the grain boundary effect disappeared as the intermolecular sp3 bonding building-up and carrier transmission channel formation above 17.0 GPa. The results in this study open a new route to construct the crystalline carbon materials with different transport properties.

Keywords: high-pressure, polycyclic aromatic hydrocarbons, dehydro-Diels–Alder reaction, diamondization

References(72)

1

Wang, Z. R.; Yu, F.; Xie, J.; Zhao, J. F.; Zou, Y.; Wang, Z. P.; Zhang, Q. C. Insights into the control of optoelectronic properties in mixed-stacking charge-transfer complexes. Chem.—Eur. J. 2020, 26, 3578–3585.

2

Dong, H. L.; Zhu, H. F.; Meng, Q.; Gong, X.; Hu, W. P. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754–1808.

3

Sun, Y. G.; Wang, L.; Liu, Y. Z.; Ren, Y. Birnessite-type MnO2 nanosheets with layered structures under high pressure: Elimination of crystalline stacking faults and oriented laminar assembly. Small 2015, 11, 300–305.

4

Zhang, L. J.; Wang, Y. C.; Lv, J.; Ma, Y. M. Materials discovery at high pressures. Nat. Rev. Mater. 2017, 2, 17005.

5

Mao, H. K.; Chen, X. J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007.

6

Ceppatelli, M.; Santoro, M.; Bini, R.; Schettino, V. High pressure reactivity of solid furan probed by infrared and Raman spectroscopy. J. Chem. Phys. 2003, 118, 1499–1506.

7

Sun, J. M.; Dong, X.; Wang, Y. J.; Li, K.; Zheng, H. Y.; Wang, L. J.; Cody, G. D.; Tulk, C. A.; Molaison, J. J.; Lin, X. H. et al. Pressure-induced polymerization of acetylene: Structure-directed stereoselectivity and a possible route to graphane. Angew. Chem., Int. Ed. 2017, 56, 6553–6557.

8

Zhao, X. M.; Zhong, G. H.; Zhang, J.; Huang, Q. W.; Goncharov, A. F.; Lin, H. Q.; Chen, X. J. Combined experimental and computational study of high-pressure behavior of triphenylene. Sci. Rep. 2016, 6, 25600.

9

Ray, P.; Gray, J. L.; Badding, J. V.; Lueking, A. D. High-pressure reactivity of triptycene probed by Raman spectroscopy. J. Phys. Chem. B 2016, 120, 11035–11042.

10

Ciabini, L.; Santoro, M.; Bini, R.; Schettino, V. High pressure reactivity of solid benzene probed by infrared spectroscopy. J. Chem. Phys. 2002, 116, 2928–2935.

11

Ke, F.; Chen, Y. B.; Yin, K. T.; Yan, J. J.; Zhang, H. Z.; Liu, Z. X.; Tse, J. S.; Wu, J. Q.; Mao, H. K.; Chen, B. Large bandgap of pressurized trilayer graphene. Proc. Natl. Acad. Sci. USA 2019, 116, 9186–9190.

12

Samanta, S.; Lee, M.; Kim, D. S.; Kim, J.; Wang, L. High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite. Nano Res. 2019, 12, 1333–1338.

13

Ciabini, L.; Santoro, M.; Gorelli, F. A.; Bini, R.; Schettino, V.; Raugei, S. Triggering dynamics of the high-pressure benzene amorphization. Nat. Mater. 2007, 6, 39–43.

14

Wang, Y. J.; Wang, L. J.; Zheng, H. Y.; Li, K.; Andrzejewski, M.; Hattori, T.; Sano-Furukawa, A.; Katrusiak, A.; Meng, Y. F.; Liao, F. H. et al. Phase transitions and polymerization of C6H6–C6F6 cocrystal under extreme conditions. J. Phys. Chem. C 2016, 120, 29510–29519.

15

Wang, Y. J.; Dong, X.; Tang, X. Y.; Zheng, H. Y.; Li, K.; Lin, X. H.; Fang, L. M.; Sun, G. A.; Chen, X. P.; Xie, L. et al. Pressure-induced Diels–Alder reactions in C6H6–C6F6 cocrystal towards graphane structure. Angew. Chem., Int. Ed. 2019, 58, 1468–1473.

16

Aust, R. B.; Bentley, W. H.; Drickamer, H. G. Behavior of fused-ring aromatic hydrocarbons at very high pressure. J. Chem. Phys. 1964, 41, 1856–1864.

17

Davydov, V. A.; Rakhmanina, A. V.; Agafonov, V.; Narymbetov, B.; Boudou, J. P.; Szwarc, H. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon 2004, 42, 261–269.

18

Wang, L.; Liu, B. B.; Li, H.; Yang, W. G.; Ding, Y.; Sinogeikin, S. V.; Meng, Y.; Liu, Z. X.; Zeng, X. C.; Mao, W. L. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 2012, 337, 825–828.

19

Li, B.; Zhang, J. B.; Yan, Z. P.; Feng, M. N.; Yu, Z. H.; Wang, L. Pressure-induced dimerization of C60 at room temperature as revealed by an in situ spectroscopy study using an infrared laser. Crystals 2020, 10, 182.

20

Pei, C. Y.; Feng, M. N.; Yang, Z. X.; Yao, M. G.; Yuan, Y.; Li, X.; Hu, B. W.; Shen, M.; Chen, B.; Sundqvist, B. et al. Quasi 3D polymerization in C60 bilayers in a fullerene solvate. Carbon 2017, 124, 499–505.

21

Wang, L.; Liu, B.; Liu, D.; Hou, Y.; Yao, M.; Zou, G.; Li, H.; Luo, C.; Li, Y.; Liu, J. High pressure studies of nano/sub-micrometer C70 rods. Chin. Phys. C: High Energy Phys. Nucl. Phys. 2005, 29, 112–115.

22

Chen, J. Y.; Kim, M.; Yoo, C. S. High structural stability of single wall carbon nanotube under quasi-hydrostatic high pressures. Chem. Phys. Lett. 2009, 479, 91–94.

23

Iizumi, Y.; Liu, Z.; Suenaga, K.; Okada, S.; Higashibayashi, S.; Sakurai, H.; Okazaki, T. Molecular arrangements of corannulene and sumanene in single-walled carbon nanotubes. ChemNanoMat 2018, 4, 557–561.

24

Okazaki, T.; Iizumi, Y.; Okubo, S.; Kataura, H.; Liu, Z.; Suenaga, K.; Tahara, Y.; Yudasaka, M.; Okada, S.; Iijima, S. Coaxially stacked coronene columns inside single-walled carbon nanotubes. Angew. Chem., Int. Ed. 2011, 50, 4853–4857.

25

Alvarez, L.; Le Parc, R.; Jourdain, V.; Dennler, S.; Bantignies, J. L.; Sauvajol, J. L.; Rose, J. A.; Scott, L. T. Temperature dependence and pressure dependence of the vibrational properties of corannulene. Phys. Status Solidi (B) 2008, 245, 2261–2263.

26

Du, M. R.; Dong, J. J.; Zhang, Y.; Yang, X. G.; Li, Z. P.; Wang, M. C.; Liu, R.; Liu, B.; Zhou, Q. J.; Wei, T. et al. Vibrational properties and polymerization of corannulene under pressure, probed by Raman and infrared spectroscopies. J. Phys. Chem. C 2019, 123, 23674–23681.

27

Hanson, J. C.; Nordman, C. E. The crystal and molecular structure of corannulene, C20H10. Acta Cryst. B 1976, 32, 1147–1153.

28

Shang, Y. C.; Liu, Z. D.; Dong, J. J.; Yao, M. G.; Yang, Z. X.; Li, Q. J.; Zhai, C. G.; Shen, F. R.; Hou, X. Y.; Wang, L. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 2021, 599, 599–604.

29

Tang, H.; Yuan, X. H.; Cheng, Y.; Fei, H. Z.; Liu, F. Y.; Liang, T.; Zeng, Z. D.; Ishii, T.; Wang, M. S.; Katsura, T. et al. Synthesis of paracrystalline diamond. Nature 2021, 599, 605–610.

30

Li, X. X.; Zhu, Y. T.; Shao, J. F.; Wang, B. L.; Zhang, S. X.; Shao, Y. L.; Jin, X. J.; Yao, X. J.; Fang, R.; Shao, X. F. Non-pyrolytic, large-scale synthesis of trichalcogenasumanene: A two-step approach. Angew. Chem., Int. Ed. 2014, 53, 535–538.

31

Wang, S. T.; Li, X. X.; Hou, X. Q.; Sun, Y. T.; Shao, X. F. Tritellurasumanene: Ultrasound assisted one-pot synthesis and extended valence adducts with bromine. Chem. Commun. 2016, 52, 14486–14489.

32

McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S. Tellurophenes with delocalized π-systems and their extended valence adducts. J. Am. Chem. Soc. 2012, 134, 3542–3548.

33

Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res.:Solid Earth 1986, 91, 4673–4676.

34

Rahman, S.; Saqib, H.; Zhang, J. B.; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, S.; Li, X. D.; Lu, J. L.; Wang, L. Pressure-induced structural and semiconductor-semiconductor transitions in Co0.5Mg0.5Cr2O4. Phys. Rev. B 2018, 97, 174102.

35

Prescher, C.; Prakapenka, V. B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223–230.

36

Dischler, B.; Bubenzer, A.; Koidl, P. Bonding in hydrogenated hard carbon studied by optical spectroscopy. Solid State Commun. 1983, 48, 105–108.

37

Dischler, B; Bubenzer, A.; Koidl, P. Hard carbon coatings with low optical absorption. Appl. Phys. Lett. 1983, 42, 636–638.

38

Zhang, P. J.; Tang, X. Y.; Wang, Y. D.; Wang, X.; Gao, D. X.; Li, Y. P.; Zheng, H. Y.; Wang, Y. J.; Wang, X. X.; Fu, R. Q. et al. Distance-selected topochemical dehydro-Diels–Alder reaction of 1, 4-diphenylbutadiyne toward crystalline graphitic nanoribbons. J. Am. Chem. Soc. 2020, 142, 17662–17669.

39

Chanyshev, A. D.; Litasov, K. D.; Shatskiy, A. F.; Ohtani, E. In situ X-ray diffraction study of decomposition of polycyclic aromatic hydrocarbons at pressures of 7–15 GPa: Implication to fluids under the Earth’ s and planetary environments. Chem. Geol. 2015, 405, 39–47.

40

Kvashnin, A. G.; Chernozatonskii, L. A.; Yakobson, B. I.; Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 2014, 14, 676–681.

41

Mimura, K.; Toyama, S.; Sugitani, K. Shock-induced dehydrogenation of polycyclic aromatic hydrocarbons with or without serpentine: Implications for planetary accretion. Earth Planet. Sci. Lett. 2005, 232, 143–156.

42

Sun, B.; Dreger, Z. A.; Gupta, Y. M. High-pressure effects in pyrene crystals: Vibrational spectroscopy. J. Phys. Chem. A 2008, 112, 10546–10551.

43

Schindler, T. L.; Vohra, Y. K. A micro-Raman investigation of high-pressure quenched graphite. J. Phys.:Condens. Matter 1996, 8, 3963.

44

Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

45

Goncharov, A. F.; Makarenko, I. N.; Stishov, S. M. Graphite at pressures up to 55 GPa: Optical properties and Raman scattering-amorphous carbon. Sov. Phys. JETP 1989, 69, 380–381.

46

Wang, Y. J.; Panzik, J. E.; Kiefer, B.; Lee, K. K. M. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2012, 2, 520.

47

Yao, M. G.; Xiao, J. P.; Fan, X. H.; Liu, R.; Liu, B. B. Transparent, superhard amorphous carbon phase from compressing glassy carbon. Appl. Phys. Lett. 2014, 104, 021916.

48

Barboza, A. P. M.; Guimaraes, M. H. D.; Massote, D. V. P.; Campos, L. C.; Neto, N. M. B.; Cancado, L. G.; Lacerda, R. G.; Chacham, H.; Mazzoni, M. S. C.; Neves, B. R. A. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 2011, 23, 3014–3017.

49

Shiell, T. B.; McCulloch, D. G.; McKenzie, D. R.; Field, M. R.; Haberl, B.; Boehler, R.; Cook, B. A.; de Tomas, C.; Suarez-Martinez, I.; Marks, N. A. et al. Graphitization of glassy carbon after compression at room temperature. Phys. Rev. Lett. 2018, 120, 215701.

50

Lim, J.; Yoo, C. S. Intercalation of solid hydrogen into graphite under pressures. Appl. Phys. Lett. 2016, 109, 051905.

51

Lin, Y.; Zhang, L.; Mao, H. K.; Chow, P.; Xiao, Y. M.; Baldini, M.; Shu, J. F.; Mao, W. L. Amorphous diamond: A high-pressure superhard carbon allotrope. Phys. Rev. Lett. 2011, 107, 175504.

52

Clark, S. M.; Jeon, K. J.; Chen, J. Y.; Yoo, C. S. Few-layer graphene under high pressure: Raman and X-ray diffraction studies. Solid State Commun. 2013, 154, 15–18.

53

Garbarczyk, J. E.; Wasiucionek, M.; Machowski, P.; Jakubowski, W. Transition from ionic to electronic conduction in silver–vanadate–phosphate glasses. Solid State Ion. 1999, 119, 9–14.

54

Tuller, H. L. Ionic conduction in nanocrystalline materials. Solid State Ion. 2000, 131, 143–157.

55

Miller, E. D.; Nesting, D. C.; Badding, J. V. Quenchable transparent phase of carbon. Chem. Mater. 1997, 9, 18–22.

56

Wu, J. H.; Wang, S. Y.; Lei, Z. W.; Guan, R. N.; Chen, M. Q.; Du, P. W.; Lu, Y. L.; Cao, R. G.; Yang, S. F. Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Res. 2021, 14, 2596–2605.

57

Soler-Piña, F. J.; Hernández-Rentero, C.; Caballero, A.; Morales, J.; Canales-Vázquez, J. Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries. Nano Res. 2020, 13, 86–94.

58

Li, G. C.; Yin, Z. L.; Dai, Y. Q.; You, B. Z.; Guo, H. J.; Wang, Z. X.; Yan, G. C.; Liu, Y.; Wang, J. X. Graphitic nanorings for super-long lifespan lithium-ion capacitors. Nano Res. 2020, 13, 2909–2916.

59

Li, H. Y.; Zhang, L. H.; Li, L.; Wu, C. W.; Huo, Y. J.; Chen, Y.; Liu, X. J.; Ke, X. X.; Luo, J.; Van Tendeloo, G. Two-in-one solution using insect wings to produce graphene–graphite films for efficient electrocatalysis. Nano Res. 2019, 12, 33–39.

60

Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

61

Mao, W. L.; Mao, H. K.; Eng, P. J.; Trainor, T. P.; Newville, M.; Kao, C. C.; Heinz, D. L.; Shu, J. F.; Meng, Y.; Hemley, R. J. Bonding changes in compressed superhard graphite. Science 2003, 302, 425–427.

62

Harris, P. J. F. Fullerene-related structure of commercial glassy carbons. Philos. Mag. 2004, 84, 3159–3167.

63

Townsend, S. J.; Lenosky, T. J.; Muller, D. A.; Nichols, C. S.; Elser, V. Negatively curved graphitic sheet model of amorphous carbon. Phys. Rev. Lett. 1992, 69, 921–924.

64

Martin, J. W.; Slavchov, R. I.; Yapp, E. K. Y.; Akroyd, J.; Mosbach, S.; Kraft, M. The polarization of polycyclic aromatic hydrocarbons curved by pentagon incorporation: The role of the flexoelectric dipole. J. Phys. Chem. C 2017, 121, 27154–27163.

65

Wentorf, R. H. Jr. The behavior of some carbonaceous materials at very high pressures and high temperatures. J. Phys. Chem. 1965, 69, 3063–3069.

66

Compagnini, G.; Calcagno, L.; Foti, G. Hydrogen effect on atomic configuration of keV-ion-irradiated carbon. Phys. Rev. Lett. 1992, 69, 454–457.

67

Martins, L. G. P.; Matos, M. J. S.; Paschoal, A. R.; Freire, P. T. C.; Andrade, N. F.; Aguiar, A. L.; Kong, J.; Neves, B. R. A.; de Oliveira, A. B.; Mazzoni, M. S. C. et al. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 2017, 8, 96.

68

Gao, Y.; Ma, Y. Z.; An, Q.; Levitas, V.; Zhang, Y. Y.; Feng, B.; Chaudhuri, J.; Goddard III, W. A. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K. Carbon 2019, 146, 364–368.

69

Dong, J. J.; Yao, Z.; Yao, M. G.; Li, R.; Hu, K.; Zhu, L. Y.; Wang, Y.; Sun, H. H.; Sundqvist, B.; Yang, K. et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys. Rev. Lett. 2020, 124, 065701.

70

Solopova, N. A.; Dubrovinskaia, N.; Dubrovinsky, L. Raman spectroscopy of glassy carbon up to 60 GPa. Appl. Phys. Lett. 2013, 102, 121909.

71

Jackson, B. R.; Trout, C. C.; Badding, J. V. UV Raman analysis of the C: H network formed by compression of benzene. Chem. Mater. 2003, 15, 1820–1824.

72

Fujikawa, T.; Preda, D. V.; Segawa, Y.; Itami, K.; Scott, L. T. Corannulene-helicene hybrids: Chiral π-systems comprising both bowl and helical motifs. Org. Lett. 2016, 18, 3992–3995.

File
12274_2022_4215_MOESM1_ESM.pdf (282.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 December 2021
Revised: 05 February 2022
Accepted: 07 February 2022
Published: 27 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52090020 and 11874076) and the National Research Foundation of Korea (Nos. 2016K1A4A3914691 and 2018R1DA1B070498).

Return