AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fine-tune chiroptical activity in discrete chiral Au nanorods

Guangchao Zheng1,2,( )Sulin Jiao1Wei Zhang3( )Shenli Wang4Qinghua Zhang5Lin Gu5Weixiang Ye6Junjun Li7Xiaochen Ren7Zhicheng Zhang7( )Kwok-yin Wong2
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Department of Applied Physics, School of Science, Hainan University, Haikou 570228, China
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University& Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Present address: School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

In this manuscript, we have developed a series of chiral plasmonic metal NPs, e.g., c-Au NRs, c-Au@Ag core-shell and c-Au@TiO2 NRs, with different chiroptical activities. The development of c-Au NRs will be helpful to understand the structure-direct PCD and to extend circularly polarized-based applications.

Abstract

Accurate researches on the surface plasmon resonance (SPR)-based applications of chiral plasmonic metal nanoparticles (NPs) still remain a great challenge. Herein, a series of chiral plasmonic metal NPs, e.g., chiral Au nanorods (c-Au NRs), c-Au@Ag core–shell, and c-Au@TiO2 core–shell NRs, with different chiroptical activities have been produced. Plasmonic circular dichroism (PCD) bands of c-Au NRs can be precisely tailored by tuning the longitudinal SPR (LSPR) and amount of Au NRs as seeds. Besides, a shift of PCD bands within ultraviolet–visible–near infrared ray (UV–vis–NIR) region can also be achieved through the functionalization of a shell of another metal or semiconductor. Interestingly, chirality transfer from c-Au core to Ag shell leads to new PCD bands at the near-UV region. The tuning of PCD bands and chirality transfer are confirmed by our developed theoretical model. Developing chiral Au NRs-based chiral plasmonic nanomaterials with tunable chiroptical activities will be helpful to understand the structure-direct PCD and to extend circularly polarized-based applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4212_MOESM1_ESM.pdf (3.6 MB)

References

1

Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 2005, 249, 1870–1901.

2

Zheng, G. C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmonic metal–organic frameworks. SmartMat 2021, 2, 446–465.

3

Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.

4

Pérez-Juste, J.; Liz-Marzán, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 2004, 14, 571–579.

5

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

6

González-Rubio, G.; Díaz-núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Palafox, M. A. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.

7

Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; Liz-Marzán, L. M. LSPR-based nanobiosensors. Nano Today 2009, 4, 244–251.

8

Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

9

Ali, M. R. K.; Wu, Y.; Tang, Y.; Xiao, H. P.; Chen, K. C.; Han, T. G.; Fang, N.; Wu, R. H.; El-Sayed, M. A. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc. Natl. Acad. Sci. USA 2017, 114, E5655–E5663.

10

Ye, W. X.; Celiksoy, S.; Jakab, A.; Khmelinskaia, A.; Heermann, T.; Raso, A.; Wegner, S. V.; Rivas, G.; Schwille, P.; Ahijado-Guzmán, R. et al. Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features. J. Am. Chem. Soc. 2018, 140, 17901–17906.

11

Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.

12

Klös, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D. S. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 2019, 12, 1635–1642.

13

Ni, B.; Cölfen, H. Chirality communications between inorganic and organic compounds. SmartMat 2021, 2, 17–32.

14

Han, Z.; Zhao, X. L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z. Y.; Zang, S. Q. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020, 13, 3248–3252.

15

Li, S.; Xu, L. W.; Lu, M. R.; Sun, M. Z.; Xu, L. G.; Hao, C. L.; Wu, X. L.; Xu, C. L.; Kuang, H. Metabolic profile of chiral cobalt oxide nanoparticles in vitro and in vivo. Nano Res. 2021, 14, 2451–2455.

16

Jeong, H. H.; Mark, A. G.; Alarcón-Correa, M.; Kim, I.; Oswald, P.; Lee, T. C.; Fischer, P. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 2016, 7, 11331.

17

Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

18

Lu, J.; Chang, Y. X.; Zhang, N. N.; Wei, Y.; Li, A. J.; Tai, J.; Xue, Y.; Wang, Z. Y.; Yang, Y.; Zhao, L. et al. Chiral plasmonic nanochains via the self-assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles. ACS Nano 2017, 11, 3463–3475.

19

Lan, X.; Lu, X. X.; Shen, C. Q.; Ke, Y. G.; Ni, W. H.; Wang, Q. B. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462.

20

Han, B.; Zhu, Z. N.; Li, Z. T.; Zhang, W.; Tang, Z. Y. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 2014, 136, 16104–16107.

21

Guerrero-Martinez, A.; Auguié, B.; Alonso-Gómez, J. L.; Džolić, Z.; Gómez-Graña, S.; Žinić, M.; Cid, M. M.; Liz-Marzán, L. M. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem., Int. Ed. 2011, 50, 5499–5503.

22

González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020, 368, 1472–1477.

23

Deng, J.; Zheng, H. H.; Zheng, X. W.; Yao, M. Y.; Li, Z.; Gao, C. Y. Gold nanoparticles with surface-anchored chiral poly(acryloyl-L(D)-valine) induce differential response on mesenchymal stem cell osteogenesis. Nano Res. 2016, 9, 3683–3694.

24

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

25

Zheng, G. C.; Bao, Z. Y.; Pérez-Juste, J.; Du, R. L.; Liu, W.; Dai, J. Y.; Zhang, W.; Lee, L. Y. S.; Wong, K. Y. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem., Int. Ed. 2018, 57, 16452–16457.

26

Nakagawa, M.; Kawai, T. Chirality-controlled syntheses of double-helical Au nanowires. J. Am. Chem. Soc. 2018, 140, 4991–4994.

27

Hao, C. L.; Xu, L. G.; Sun, M. Z.; Ma, W.; Kuang, H.; Xu, C. L. Chirality on hierarchical self-assembly of Au@AuAg yolk–shell nanorods into core–satellite superstructures for biosensing in human cells. Adv. Funct. Mater. 2018, 28, 1802372.

28

Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties. Nano Res. 2015, 9, 451–457.

29

Lee, H. E.; Kim, R. M.; Ahn, H. Y.; Lee, Y. Y.; Byun, G. H.; Im, S. W.; Mun, J.; Rho, J.; Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

30

Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.

31

Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.

32

Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117.

33

Smith, K. W.; Zhao, H. Q.; Zhang, H.; Sánchez-Iglesias, A.; Grzelczak, M.; Wang, Y. M.; Chang, W. S.; Nordlander, P.; Liz-Marzan, L. M.; Link, S. Chiral and achiral nanodumbbell dimers: The effect of geometry on plasmonic properties. ACS Nano 2016, 10, 6180–6188.

34

Jiang, R. B.; Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Unraveling the evolution and nature of the plasmons in (Au core)–(Ag shell) nanorods. Adv. Mater. 2012, 24, OP200–OP207.

35

Hou, S.; Yan, J.; Hu, Z. J.; Wu, X. C. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core–shell interface of rod-shaped Au@Ag nanocrystals. Chem. Commun. 2016, 52, 2059–2062.

36

Fischer, P.; Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 2005, 17, 421–437.

37

Bai, B. F.; Svirko, Y.; Turunen, J.; Vallius, T. Optical activity in planar chiral metamaterials: Theoretical study. Phys. Rev. A 2007, 76, 023811.

38

Yin, X. H.; Schäferling, M.; Metzger, B.; Giessen, H. Interpreting chiral nanophotonic spectra: The plasmonic born-kuhn model. Nano Lett. 2013, 13, 6238–6243.

39

Zheng, G. C.; Mourdikoudis, S.; Zhang, Z. C. Plasmonic metallic heteromeric nanostructures. Small 2020, 16, 2002588.

40

Guerrero-Martínez, A.; Alonso-Gómez, J. L.; Auguié, B.; Cid, M. M.; Liz-Marzán, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 2011, 6, 381–400.

41

Hentschel, M.; Wu, L.; Schäferling, M.; Bai, P.; Li, E. P.; Giessen, H. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. ACS Nano 2012, 6, 10355–10365.

42

Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries. J. Phys. Chem. C 2011, 115, 7914–7923.

43

Govorov, A. O.; Fan, Z. Y.; Hernandez, P.; Slocik, J. M.; Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382.

44

Jin, Z.; Wang, F.; Wang, F.; Wang, J. X.; Yu, J. C.; Wang, J. F. Metal nanocrystal-embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates. Adv. Funct. Mater. 2013, 23, 2137–2144.

Nano Research
Pages 6574-6581
Cite this article:
Zheng G, Jiao S, Zhang W, et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Research, 2022, 15(7): 6574-6581. https://doi.org/10.1007/s12274-022-4212-y
Topics:

1607

Views

43

Crossref

44

Web of Science

40

Scopus

0

CSCD

Altmetrics

Received: 19 September 2021
Revised: 18 January 2022
Accepted: 07 February 2022
Published: 31 March 2022
© Tsinghua University Press 2022
Return