Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Systemic infections caused by life-threatening pathogens represent one of the main factors leading to clinical death. In this study, we developed a pathogen infection-responsive and macrophage endoplasmic reticulum-targeting nanoplatform to alleviate systemic infections. The nanoplatform is composed of large-pore mesoporous silica nanoparticles (MSNs) grafted by an endoplasmic reticulum-targeting peptide, and a pathogen infection-responsive cap containing the reactive oxygen species-cleavable boronobenzyl acid linker and bovine serum albumin. The capped MSNs exhibited the capacity to high-efficiently load the antimicrobial peptide melittin, and to rapidly release the cargo triggered by H2O2 or the pathogen-macrophage interaction system, but had no obvious toxicity to macrophages. During the interaction with pathogenic Candida albicans cells and macrophages, the melittin-loading nanoplatform MSNE+MEL+TPB strongly inhibited pathogen growth, survived macrophages, and suppressed endoplasmic reticulum stress together with pro-inflammatory cytokine secretion. In a systemic infection model, the nanoplatform efficiently prevented kidney dysfunction, alleviated inflammatory symptoms, and protected the mice from death. This study developed a macrophage organelle-targeting nanoplatform for treatment of life-threatening systemic infections.
Seitz, B. M.; Aktipis, A.; Buss, D. M.; Alcock, J.; Bloom, P.; Gelfand, M.; Harris, S.; Lieberman, D.; Horowitz, B. N.; Pinker, S. et al. The pandemic exposes human nature: 10 evolutionary insights. Proc. Natl. Acad. Sci. USA 2020, 117, 27767–27776.
Metcalf, C. J. E.; Lessler, J. Opportunities and challenges in modeling emerging infectious diseases. Science 2017, 357, 149–152.
Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.
Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L. E. Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chem. Rev. 2021, 121, 3390–3411.
Toledo, A. G.; Golden, G.; Campos, A. R.; Cuello, H.; Sorrentino, J.; Lewis, N.; Varki, N.; Nizet, V.; Smith, J. W.; Esko, J. D. Proteomic atlas of organ vasculopathies triggered by Staphylococcus aureus sepsis. Nat. Commun. 2019, 10, 4656.
Li, H.; Liu, L.; Zhang, D. Y.; Xu, J. Y.; Dai, H. P.; Tang, N.; Su, X.; Cao, B. SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet 2020, 395, 1517–1520.
Shi, Q. B.; Zhang, H. W.; Zhang, H. P.; Zhao, P.; Zhang, Y.; Tang, Y. H. Polydopamine/silver hybrid coatings on soda-lime glass spheres with controllable release ability for inhibiting biofilm formation. Sci. China Mater. 2020, 63, 842–850.
Nedeva, C.; Menassa, J.; Duan, M. B.; Liu, C. X.; Doerflinger, M.; Kueh, A. J.; Herold, M. J.; Fonseka, P.; Phan, T. K.; Faou, P. et al. TREML4 receptor regulates inflammation and innate immune cell death during polymicrobial sepsis. Nat. Immunol. 2020, 21, 1585–1596.
Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87.
Hotchkiss, R. S.; Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 2003, 348, 138–150.
Benjamin, J. T.; Moore, D. J.; Bennett, C.; van der Meer, R.; Royce, A.; Loveland, R.; Wynn, J. L. Cutting edge: IL-1α and not IL-1β drives IL-1R1-dependent neonatal murine sepsis lethality. J. Immunol. 2018, 201, 2873–2878.
Lasola, J. J. M.; Kamdem, H.; McDaniel, M. W.; Pearson, R. M. Biomaterial-driven immunomodulation: Cell biology-based strategies to mitigate severe inflammation and sepsis. Front. Immunol. 2020, 11, 1726.
Chen, G.; Deng, H. Z.; Song, X.; Lu, M. Z.; Zhao, L.; Xia, S.; You, G. X.; Zhao, J. X.; Zhang, Y. L.; Dong, A. J. et al. Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice. Biomaterials 2017, 144, 30–41.
Russell, D. G.; Huang, L.; VanderVen, B. C. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 2019, 19, 291–304.
Roca, F. J.; Whitworth, L. J.; Redmond, S.; Jones, A. A.; Ramakrishnan, L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell 2019, 178, 1344–1361.e11.
Feduska, J. M.; Tse, H. M. The proinflammatory effects of macrophage-derived NADPH oxidase function in autoimmune diabetes. Free Radic. Biol. Med. 2018, 125, 81–89.
Choi, J. A.; Song, C. H. Insights into the role of endoplasmic reticulum stress in infectious diseases. Front. Immunol. 2020, 10, 3147.
Grover, S.; Sharma, T.; Singh, Y.; Kohli, S.; P, M.; Singh, A.; Semmler, T.; Wieler, L. H.; Tedin, K.; Ehtesham, N. Z. et al. The PGRS domain of Mycobacterium tuberculosis PE_PGRS protein Rv0297 is involved in endoplasmic reticulum stress-mediated apoptosis through Toll-like receptor 4. mBio 2018, 9, e01017–18.
Zhu, Y.; Xu, J.; Wang, Y. M.; Chen, C.; Gu, H. C.; Chai, Y. M.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020, 13, 389–400.
Croissant, J. G.; Butler, K. S.; Zink, J. I.; Jeffrey Brinker, C. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 2020, 5, 886–909.
Lin, F. C.; Zink, J. I. Probing the local nanoscale heating mechanism of a magnetic core in mesoporous silica drug-delivery nanoparticles using fluorescence depolarization. J. Am. Chem. Soc. 2020, 142, 5212–5220.
Cai, Y.; Deng, T.; Pan, Y. X.; Zink, J. I. Use of ferritin capped mesoporous silica nanoparticles for redox and pH triggered drug release in vitro and in vivo. Adv. Funct. Mater. 2020, 30, 2002043.
Cheng, C. A.; Deng, T.; Lin, F. C.; Cai, Y.; Zink, J. I. Supramolecular nanomachines as stimuli-responsive gatekeepers on mesoporous silica nanoparticles for antibiotic and cancer drug delivery. Theranostics 2019, 9, 3341–3364.
Ryplida, B.; Lee, G.; In, I.; Park, S. Y. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomater. Sci. 2019, 7, 2600–2610.
Dong, J. H.; Ma, Y.; Li, R.; Zhang, W. T.; Zhang, M. Q.; Meng, F. N.; Ding, K.; Jiang, H. T.; Gong, Y. K. Smart MSN-drug-delivery system for tumor cell targeting and tumor microenvironment release. ACS Appl. Mater. Interfaces 2021, 13, 42522–42532.
Yan, Q.; Guo, X. L.; Huang, X. L.; Meng, X.; Liu, F.; Dai, P. P.; Wang, Z.; Zhao, Y. J. Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Appl. Mater. Interfaces 2019, 11, 24377–24385.
Bai, B. B.; Gu, C. Y.; Lu, X. H.; Ge, X. Y.; Yang, J. L.; Wang, C. F.; Gu, Y. C.; Deng, A. D.; Guo, Y. H.; Feng, X. M. et al. Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization. Nano Res. 2021, 14, 4577–4583.
Yu, Q. L.; Deng, T.; Lin, F. C.; Zhang, B.; Zink, J. I. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano 2020, 14, 5926–5937.
Mirhadi, E.; Mashreghi, M.; Faal Maleki, M.; Alavizadeh, S. H.; Arabi, L.; Badiee, A.; Jaafari, M. R. Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int. J. Pharm. 2020, 589, 119882.
Saravanakumar, G.; Kim, J.; Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 2017, 4, 1600124.
Hu, J. J.; Lei, Q.; Peng, M. Y.; Zheng, D. W.; Chen, Y. X.; Zhang, X. Z. A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials 2017, 128, 136–146.
Yu, Q. L.; Wu, G. Z.; Zhang, T.; Zhao, X. D.; Zhou, Z.; Liu, L.; Chen, W.; Alvarez, P. J. J. Targeting specific cell organelles with different-faceted nanocrystals that are selectively recognized by organelle-targeting peptides. Chem. Commun. 2020, 56, 7613–7616.
Wang, J. Q.; Ye, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Zhang, X. D.; Wang, C.; Sun, W. J.; Corder, R. D.; Chen, Z. W.; Khan, S. A. et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano 2018, 12, 2466–2473.
Ruan, H. T.; Hu, Q. Y.; Wen, D.; Chen, Q.; Chen, G. J.; Lu, Y. F.; Wang, J. Q.; Cheng, H.; Lu, W. Y.; Gu, Z. A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Adv. Mater. 2019, 31, 1806957.
Lee, Y.; Choi, K. H.; Park, K. M.; Lee, J. M.; Park, B. J.; Park, K. D. In situ forming and H2O2-releasing hydrogels for treatment of drug-resistant bacterial infections. ACS Appl. Mater. Interfaces 2017, 9, 16890–16899.
Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.
Wang, Y.; Song, H.; Yang, Y. N.; Liu, Y.; Tang, J.; Yu, C. Z. Kinetically controlled dendritic mesoporous silica nanoparticles: From dahlia- to pomegranate-like structures by micelle filling. Chem. Mater. 2018, 30, 5770–5776.
Memariani, H.; Memariani, M.; Shahidi-Dadras, M.; Nasiri, S.; Akhavan, M. M.; Moravvej, H. Melittin: From honeybees to superbugs. Appl. Microbiol. Biotechnol. 2019, 103, 3265–3276.
Dunn, K. W.; Kamocka, M. M.; McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011, 300, C723–C742.
Jenney, C. R.; Anderson, J. M. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J. Biomed. Mater. Res. 2000, 49, 435–447.
Kang, J. Y.; Kim, S.; Kim, J.; Kang, N. G.; Yang, C. S.; Min, S. J.; Kim, J. W. Cell-penetrating peptide-conjugated lipid/polymer hybrid nanovesicles for endoplasmic reticulum-targeting intracellular delivery. J. Mater. Chem. B 2021, 9, 464–470.
Ting, C. H.; Huang, H. N.; Huang, T. C.; Wu, C. J.; Chen, J. Y. The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS. Biomaterials 2014, 35, 3627–3640.
Lin, F. C.; Xie, Y. J.; Deng, T.; Zink, J. I. Magnetism, ultrasound, and light-stimulated mesoporous silica nanocarriers for theranostics and beyond. J. Am. Chem. Soc. 2021, 143, 6025–6036.
Wu, S.; Huang, X.; Du, X. Z. Glucose- and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers. Angew. Chem., Int. Ed. 2013, 52, 5580–5584.
Doerflinger, M.; Reljic, B.; Menassa, J.; Nedeva, C.; Jose, I.; Faou, P.; Mackiewicz, L.; Mansell, A.; Pellegrini, M.; Hotchkiss, R. et al. Circulating BiP/Grp78 is a novel prognostic marker for sepsis-mediated immune cell death. FEBS J. 2021, 288, 1809–1821.
Xiao, H. Y.; Siddiqui, J.; Remick, D. G. Mechanisms of mortality in early and late sepsis. Infect. Immun. 2006, 74, 5227–5235.
Ito, S.; Tanaka, Y.; Oshino, R.; Okado, S.; Hori, M.; Isobe, K. I. GADD34 suppresses lipopolysaccharide-induced sepsis and tissue injury through the regulation of macrophage activation. Cell Death Dis. 2016, 7, e2219.
Louessard, M.; Bardou, I.; Lemarchand, E.; Thiebaut, A. M.; Parcq, J.; Leprince, J.; Terrisse, A.; Carraro, V.; Fafournoux, P.; Bruhat, A. et al. Activation of cell surface GRP78 decreases endoplasmic reticulum stress and neuronal death. Cell Death Differ. 2017, 24, 1518–1529.
Burban, A.; Sharanek, A.; Guguen-Guillouzo, C.; Guillouzo, A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic. Biol. Med. 2018, 115, 166–178.
Jawale, C. V.; Biswas, P. S. Local antifungal immunity in the kidney in disseminated candidiasis. Curr. Opin. Microbiol. 2021, 62, 1–7.
Peng, L. P.; Wei, H. N.; Tian, L.; Xu, J. C.; Li, M. C.; Yu, Q. L. Phospholipid/protein co-mediated assembly of Cu2O nanoparticles for specific inhibition of growth and biofilm formation of pathogenic fungi. Sci. China Mater. 2021, 64, 759–768.
Jawale, C. V.; Ramani, K.; Li, D. D.; Coleman, B. M.; Oberoi, R. S.; Kupul, S.; Lin, L.; Desai, J. V.; Delgoffe, G. M.; Lionakis, M. S. et al. Restoring glucose uptake rescues neutrophil dysfunction and protects against systemic fungal infection in mouse models of kidney disease. Sci. Transl. Med. 2020, 12, eaay5691.