AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction

Aixin Fan1,3Congli Qin1Ruxia Zhao2Haixiao Sun3Hui Sun3Xiaoping Dai3Jin-Yu Ye4Shi-Gang Sun4Yanhong Lu1( )Xin Zhang3( )
School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
ShanDong Drug and Food Vacational Colleage, Weihai 255000, China
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

This work provides an effective strategy for fine-tuning PtNi alloy nanocrystals with high-index facets (HIFs) via surface P doping to boost the electro-oxidation reaction of methanol (CH3OH).

Abstract

Surface engineering has been found to be an efficient strategy to boost the catalytic performance of noble-metal-based nanocatalysts. In this work, a small amount of P was doped to the surface of PtNi concave cube (P-PtNi CNC). Interestingly, the P-PtNi CNC nanocatalyst shows an enhanced methanol oxidation reaction (MOR) performance with achieving 8.19 times of specific activity than that of comercial Pt/C. The electrochemical in situ Fourier transform infrared spectroscopy (FTIR) results reveal that the surface P doping promotes the adsorption energy of OH, enhancing the resistance against CO poisoning. Therefore, the intermediate adsorbed CO (COads) reacted with adsorbed OH (OHads) through the Langmuir–Hinshelwood (LH) mechanism to generate CO2 and release surface active sites for further adsorption. This work provides a promising strategy via the incorporation of non-metallic elements into the PtNi alloys bounded with high-index facets (HIFs) as efficient fuel cell catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4210_MOESM1_ESM.pdf (1.5 MB)

References

1

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

2

Wang, C.; Shang, H. Y.; Li, J.; Wang, Y.; Xu, H.; Wang, C. Y.; Guo, J.; Du, Y. K. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. Chem. Eng. J. 2021, 420, 129805.

3

Zhang, X.; Tian, F. Y.; Gao, M. Y.; Yang, W. W.; Yu, Y. S. L-cysteine capped Mo2C/Zn0.67Cd0.33S heterojunction with intimate covalent bonds enables efficient and stable H2-releasing photocatalysis. Chem. Eng. J. 2022, 428, 132628.

4

Luo, S. P.; Chen, W.; Cheng, Y.; Song, X.; Wu, Q. L.; Li, L. X.; Wu, X. T.; Wu, T. H.; Li, M. R.; Yang, Q. et al. Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 2019, 31, 1903683.

5

Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

6

Lei, W. J.; Li, M. G.; He, L.; Meng, X.; Mu, Z. J.; Yu, Y. S.; Ross, F. M.; Yang, W. W. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638–645.

7

Li, J.; Zhou, Z. Y.; Xu, H.; Wang, C.; Hata, S.; Dai, Z. X.; Shiraishi, Y.; Du, Y. K. In situ nanopores enrichment of mesh-like palladium nanoplates for bifunctional fuel cell reactions: A joint etching strategy. J. Colloid Interface Sci. 2022, 611, 523–532.

8

Li, J.; Wang, C.; Shang, H. Y.; Wang, Y.; You, H. M.; Xu, H.; Du, Y. K. Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis. Chem. Eng. J. 2021, 424, 130319.

9

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

10

Luo, S. P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.

11

Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

12

Yang, L. N.; Song, X. H.; Qi, M. L.; Xia, L. X.; Jin, M. S. Templated high-yield synthesis of Pt nanorods enclosed by high-index {311} facets for methanol selective oxidation. J. Mater. Chem. A 2013, 1, 7316–7320.

13

Xiao, Y. X.; Ying, J.; Tian, G.; Zhang, X. Q.; Janiak, C.; Ozoemena, K. I.; Yang, X. Y. PtPd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chem. Commun. 2021, 57, 986–989.

14

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

15

Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2022, 15, 18–37.

16

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

17

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Yang, Y.; Luo, M. C.; Huang, Y. R.; Sun, Y. J.; Chao, Y. G.; Yang, W. X.; Yang, W. W. et al. Lavender-like Ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 2020, 10, 3018–3026.

18

Li, M. M.; Fang, Y.; Zhang, G. L.; Cui, P.; Yang, Z. Z.; He, J. B. Carbon-supported Pt5P2 nanoparticles used as a high-performance electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A 2020, 8, 10433–10438.

19

Deng, K.; Xu, Y.; Yang, D. D.; Qian, X. Q.; Dai, Z. C.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Chem. A 2019, 7, 9791–9797.

20

Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

21

Li, Y. R.; Wang, Y.; Li, S. N.; Li, M. X.; Liu, Y. J.; Fang, X.; Dai, X. P.; Zhang, X. Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions. J. Catal. 2021, 395, 282–292.

22

Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 12522–12527.

23

Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 2773–2777.

24

Qin, C. L.; Fan, A. X.; Zhang, X.; Dai, X. P.; Sun, H.; Ren, D. H.; Dong, Z.; Wang, Y.; Luan, C. L.; Ye, J. Y. et al. The in situ etching assisted synthesis of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Nanoscale 2019, 11, 9061–9075.

25

Zhang, Z. C.; Hui, J. F.; Liu, Z. C.; Zhang, X.; Zhuang, J.; Wang, X. Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities. Langmuir 2012, 28, 14845–14848.

26

Guo, R. Y.; Bi, W.; Zhang, K.; Liu, Y. M.; Wang, C. Q.; Zheng, Y. Z.; Jin, M. S. Phosphorization treatment improves the catalytic activity and durability of platinum catalysts toward oxygen reduction reaction. Chem. Mater. 2019, 31, 8205–8211.

27

Liu, Z.; Li, Z.; Li, J.; Xiong, J.; Zhou, S. F.; Liang, J. W.; Cai, W. W.; Wang, C.; Yang, Z. H.; Cheng, H. S. Engineering of Ru/Ru2P interfaces superior to Pt active sites for catalysis of the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 5621–5625.

28

Duan, H. H.; Li, D. G.; Tang, Y.; He, Y.; Ji, S. F.; Wang, R. Y.; Lv, H. F.; Lopes, P. P.; Paulikas, A. P.; Li, H. Y. et al. High-performance Rh2P electrocatalyst for efficient water splitting. J. Am. Chem. Soc. 2017, 139, 5494–5502.

29

Chen, Z.; He, Y. C.; Chen, J. H.; Fu, X. Z.; Sun, R.; Chen, Y. X.; Wong, C. P. PdCu alloy flower-like nanocages with high electrocatalytic performance for methanol oxidation. J. Phys. Chem. C 2018, 122, 8976–8983.

30

Zhan, F. W.; Bian, T.; Zhao, W. G.; Zhang, H.; Jin, M. S.; Yang, D. R. Facile synthesis of Pd-Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm 2014, 16, 2411–2416.

31

Liu, K.; Wang, W.; Guo, P. H.; Ye, J. Y.; Wang, Y. Y.; Li, P. T.; Lyu, Z. X.; Geng, Y. S.; Liu, M. C.; Xie, S. F. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation. Adv. Funct. Mater. 2019, 29, 1806300.

32

Qu, X. M.; You, L. X.; Tian, X. C.; Zhang, B. W.; Mahadevan, G. D.; Jiang, Y. X.; Sun, S. G. CeO2 nanorods with high energy surfaces as electrocatalytical supports for methanol electrooxidation. Electrochim. Acta 2015, 182, 1078–1084.

33

Erini, N.; Beermann, V.; Gocyla, M.; Gliech, M.; Heggen, M.; Dunin-Borkowski, R. E.; Strasser, P. The effect of surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 6533–6538.

34

Nia, N. S.; Guillén-Villafuerte, O.; Griesser, C.; Manning, G.; Kunze-Liebhäuser, J.; Arévalo, C.; Pastor, E.; García, G. W2C-supported PtAuSn-a catalyst with the earliest ethanol oxidation onset potential and the highest ethanol conversion efficiency to CO2 known till date. ACS Catal. 2020, 1113–1122.

35

Li, M. G.; Zhao, Z. L.; Zhang, W. Y.; Luo, M. C.; Tao, L.; Sun, Y. J.; Xia, Z. H.; Chao, Y. G.; Yin, K.; Zhang, Q. H. et al. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Adv. Mater. 2021, 33, 2103762.

36

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

37

Zhang, S.; Zeng, Z. C.; Li, Q. Q.; Huang, B. L.; Zhang, X. Y.; Du, Y. P.; Yan, C. H. Lanthanide electronic perturbation in Pt-Ln (La, Ce, Pr, and Nd) alloys for enhanced methanol oxidation reaction activity. Energy Environ. Sci. 2021, 14, 5911–5918.

38

Wang, K. L.; Huang, D. Y.; Guan, Y. C.; Liu, F.; He, J.; Ding, Y. Fine-tuning the electronic structure of dealloyed PtCu nanowires for efficient methanol oxidation reaction. ACS Catal. 2021, 11, 14428–14438.

39

Wang, C.; Jin, L. J.; Shang, H. Y.; Xu, H.; Shiraishi, Y.; Du, Y. K. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 2108–2116.

Nano Research
Pages 6961-6968
Cite this article:
Fan A, Qin C, Zhao R, et al. Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction. Nano Research, 2022, 15(8): 6961-6968. https://doi.org/10.1007/s12274-022-4210-0
Topics:

1133

Views

30

Crossref

30

Web of Science

31

Scopus

3

CSCD

Altmetrics

Received: 05 January 2022
Revised: 25 January 2022
Accepted: 03 February 2022
Published: 28 May 2022
© Tsinghua University Press 2022
Return