Journal Home > Volume 15 , Issue 7

Nickel-CeO2-based materials are commonly used for the thermal catalytic hydrogenation of CO2. However, high Ni loadings and low CO selectivity restrict their use in the reverse water–gas shift (RWGS) reaction. Herein, we demonstrate a highly active, robust, and low-Ni-doped (1.1 wt.%) CeO2 catalyst (1.0-Ni-CeO2). The Ni-based-mass-specific CO formation rate reaches up to 1,542 mmol·gNi−1·h−1 with 100% CO selectivity at 300 °C for 100 h, among the best values reported in the literature. Density functional theory (DFT) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results reveal that the enhanced catalytic activity is attributed to the abundant Ce–H species, while the high selectivity results from low CO affinity. More importantly, a new reaction mechanism is proposed, which involves the reduction of bicarbonate to generate formate intermediate and CO by the H released from Ce–H species. The new findings in this work will benefit the design of economic, efficient, and robust catalysts for low-temperature RWGS reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Identifying the roles of Ce3+–OH and Ce–H in the reverse water–gas shift reaction over highly active Ni-doped CeO2 catalyst

Show Author's information Haidong Shen1Yujuan Dong1Shaowei Yang1Yuan He1Qimeng Wang1Yueling Cao1Wenbin Wang1Tianshuai Wang1( )Qiuyu Zhang1( )Hepeng Zhang1,2( )
Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China

Abstract

Nickel-CeO2-based materials are commonly used for the thermal catalytic hydrogenation of CO2. However, high Ni loadings and low CO selectivity restrict their use in the reverse water–gas shift (RWGS) reaction. Herein, we demonstrate a highly active, robust, and low-Ni-doped (1.1 wt.%) CeO2 catalyst (1.0-Ni-CeO2). The Ni-based-mass-specific CO formation rate reaches up to 1,542 mmol·gNi−1·h−1 with 100% CO selectivity at 300 °C for 100 h, among the best values reported in the literature. Density functional theory (DFT) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results reveal that the enhanced catalytic activity is attributed to the abundant Ce–H species, while the high selectivity results from low CO affinity. More importantly, a new reaction mechanism is proposed, which involves the reduction of bicarbonate to generate formate intermediate and CO by the H released from Ce–H species. The new findings in this work will benefit the design of economic, efficient, and robust catalysts for low-temperature RWGS reactions.

Keywords: CO2 hydrogenation , Ni-doped CeO2, cerium hydride, mechanism investigation, reverse water–gas shift (RWGS) reaction

References(54)

1

Winter, L. R.; Gomez, E.; Yan, B. H.; Yao, S. Y.; Chen, J. G. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation. Appl. Catal. B Environ. 2018, 224, 442–450.

2

Centi, G.; Quadrelli, E. A.; Perathoner, S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731.

3

Wang, Y. N.; Winter, L. R.; Chen, J. G.; Yan, B. H. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic properties to product selectivity. Green. Chem. 2021, 23, 249–267.

4

Yang, X. L.; Su, X.; Chen, X. D.; Duan, H. M.; Liang, B. L.; Liu, Q. G.; Liu, X. Y.; Ren, Y. J.; Huang, Y. Q.; Zhang, T. Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Appl. Catal. B Environ. 2017, 216, 95–105.

5

Wang, X.; Shi, H.; Kwak, J. H.; Szanyi, J. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient Drifts-MS studies. ACS Catal. 2015, 5, 6337–6349.

6

Dou, J.; Sheng, Y.; Choong, C.; Chen, L. W.; Zeng, H. C. Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Appl. Catal. B Environ. 2017, 219, 580–591.

7

Yu, Y.; Jin, R. X.; Easa, J.; Lu, W.; Yang, M.; Liu, X. C.; Xing, Y.; Shi, Z. Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal-support interactions for the RWGS reaction. Chem. Commun. 2019, 55, 4178–4181.

8

Yang, L.; Pastor-Pérez, L.; Gu, S.; Sepulveda-Escribano, A.; Reina, T. R. Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water–gas shift: Effect of selected transition metal promoters. Appl. Catal. B Environ. 2018, 232, 464–471.

9

De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10, 14147–14185.

10

Ginés, M. J. L.; Marchi, A. J.; Apesteguía, C. R. Kinetic study of the reverse water–gas shift reaction over CuO/ZnO/Al2O3 catalysts. Appl. Catal. A Gen. 1997, 154, 155–171.

11

Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

12

Su, X.; Yang, X. L.; Zhao, B.; Huang, Y. Q. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: Recent advances and the future directions. J Energy. Chem. 2017, 26, 854–867.

13

Porosoff, M. D.; Yan, B. H.; Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62–73.

14

Wu, H. C.; Chang, Y. C.; Wu, J. H.; Lin, J. H.; Lin, I. K.; Chen, C. S. Methanation of CO2 and reverse water–gas shift reactions on Ni/SiO2 catalysts: The influence of particle size on selectivity and reaction pathway. Catal. Sci. Technol. 2015, 5, 4154–4163.

15

Hao, Z. W.; Shen, J. D.; Lin, S. X.; Han, X. Y.; Chang, X.; Liu, J.; Li, M. S.; Ma, X. B. Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni. Appl. Catal. B Environ. 2021, 286, 119922.

16

Millet, M. M.; Algara-Siller, G.; Wrabetz, S.; Mazheika, A.; Girgsdies, F.; Teschner, D.; Seitz, F.; Tarasov, A.; Levchenko, S. V.; Schloögl, R. et al. Ni single atom catalysts for CO2 activation. J. Am. Chem. Soc. 2019, 141, 2451–2461.

17

Zurrer, T.; Wong, K.; Horlyck, J.; Lovell, E. C.; Wright, J.; Bedford, N. M.; Han, Z. J.; Liang, K.; Scott, J.; Amal, R. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Adv. Funct. Mater. 2020, 31, 2007624.

18

Li, M. S.; Amari, H.; Van Veen, A. C. Metal–oxide interaction enhanced CO2 activation in methanation over ceria supported nickel nanocrystallites. Appl. Catal. B Environ. 2018, 239, 27–35.

19

Liu, Y.; Liu, D. Z. Study of bimetallic Cu-Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation. Int. J. Hydrog. Energy 1999, 24, 351–354.

20

Gálvez, M. E.; Ascaso, S.; Moliner, R.; Lázaro, M. J. Influence of the alkali promoter on the activity and stability of transition metal (Cu, Co, Fe) based structured catalysts for the simultaneous removal of soot and Nox. Top. Catal. 2013, 56, 493–498.

21

Reddy, B. M.; Katta L.; Thrimurthulu, G. Novel nanocrystalline Ce1−xLaxO2-δ (x = 0.2) solid solutions: Structural characteristics and catalytic performance. Chem. Mater. 2010, 22, 467–475.

22

Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M. Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498–1501.

23

Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z. M.; Ma, Y. Y.; Zhang, Z. Y.; Wang, Y.; Qu, Y. Q. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629–2637.

24

Wang, F.; Li, C. M.; Zhang, X. Y.; Wei, M.; Evans, D. G.; Duan, X. Catalytic behavior of supported Ru nanoparticles on the {100}, {110}, and {111} facet of CeO2. J. Catal. 2015, 329, 177–186.

25

Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Li, M. L.; Zhou, Y. J.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Oxygen vacancy generation and stabilization in CeO2−x by cu introduction with improved CO2 photocatalytic reduction activity. ACS Catal. 2019, 9, 4573–4581.

26

Wang, Z. Q.; Chu, D. R.; Zhou, H.; Wu, X. P.; Gong, X. Q. Role of low-coordinated Ce in hydride formation and selective hydrogenation reactions on CeO2 surfaces. ACS Catal. 2021, 624–632.

27

Riley, C.; Zhou, S. L.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L. Y.; Lin, S.; Guo, H.; Datye, A. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973.

28

Matz, O.; Calatayud, M. Breaking H2 with CeO2: Effect of surface termination. ACS Omega 2018, 3, 16063–16073.

29

Ye, R. P.; Li, Q. H.; Gong, W. B.; Wang, T. T.; Razink, J. J.; Lin, L.; Qin, Y. Y.; Zhou, Z. F.; Adidharma, H.; Tang, J. K. et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Appl. Catal. B Environ. 2020, 268, 118474.

30

Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203–6215.

31

Wu, Z. L.; Cheng, Y. Q.; Tao, F.; Daemen, L.; Foo, G. S.; Nguyen, L.; Zhang, X. Y.; Beste, A.; Ramirez-Cuesta, A. J. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. J. Am. Chem. Soc. 2017, 139, 9721–9727.

32

Li, Z. R.; Werner, K.; Qian, K.; You, R.; Płucienik, A.; Jia, A. P.; Wu, L. H.; Zhang, L. Y.; Pan, H. B.; Kuhlenbeck, H. et al. Oxidation of reduced ceria by incorporation of hydrogen. Angew. Chem., Int. Ed. 2019, 58, 14686–14693.

33

Li, Z. R.; Werner, K.; Chen, L.; Jia, A. P.; Qian, K.; Zhong, J. Q.; You, R.; Wu, L. H.; Zhang, L. Y.; Pan, H. B. et al. Interaction of hydrogen with ceria: Hydroxylation, reduction, and hydride formation on the surface and in the bulk. Chem. -Eur. J. 2020, 10, 5278–5287.

34

Moon, J.; Cheng, Y. Q.; Daemen, L. L.; Li, M. J.; Polo-Garzon, F.; Ramirez-Cuesta, A. J.; Wu, Z. L. Discriminating the role of surface hydride and hydroxyl for acetylene semihydrogenation over ceria through in situ neutron and infrared spectroscopy. ACS Catal. 2020, 10, 5278–5287.

35

Wang, L. H.; Zhang, S. X.; Liu, Y. A. Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts. J. Rare Earths 2008, 26, 66–70.

36

Lu, B.; Kawamoto, K. Preparation of mesoporous CeO2 and monodispersed NiO particles in CeO2, and enhanced selectivity of NiO/CeO2 for reverse water gas shift reaction. Materials Research Bulletin 2014, 53, 70–78.

37

Li, Q. Q.; Huang, Z.; Guan, P. F.; Su, R.; Cao, Q.; Chao, Y. M.; Shen, W.; Guo, J. J.; Xu, H. L.; Che, R. C. Simultaneous Ni doping at atom scale in ceria and assembling into well-defined lotuslike structure for enhanced catalytic performance. ACS Appl. Mater. Interfaces 2017, 9, 16243–16251.

38

Wang, L. H.; Liu, H.; Liu, Y.; Chen, Y.; Yang, S. Q. Effect of precipitants on Ni-CeO2 catalysts prepared by a Co-precipitation method for the reverse water-gas shift reaction. J. Rare Earths 2013, 31, 969–974.

39

Zhang, H. P.; Wu, C.; Wang, W. B.; Bu, J.; Zhou, F. T.; Zhang, B. L.; Zhang, Q. Y. Effect of ceria on redox-catalytic property in mild condition: A solvent-free route for imine synthesis at low temperature. Appl. Catal. B Environ. 2018, 227, 209–217.

40

Zhu, S. H.; Lian, X. Y.; Fan, T. T.; Chen, Z.; Dong, Y. Y.; Weng, W. Z.; Yi, X. D.; Fang, W. P. Thermally stable core–shell Ni/nanorod-CeO2@SiO2 catalyst for partial oxidation of methane at high temperatures. Nanoscale 2018, 10, 14031–14038.

41

Lian, Z. H.; Shan, W. P.; Zhang, Y.; Wang, M.; He, H. Morphology-dependent catalytic performance of NbOx/CeO2 catalysts for selective catalytic reduction of NOx with NH3. Ind. Eng. Chem. Res. 2018, 57, 12736–12741.

42

Tang, C. J.; Li, J. C.; Yao, X. J.; Sun, J. F.; Cao, Y.; Zhang, L.; Gao, F.; Deng, Y.; Dong, L. Mesoporous NiO-CeO2 catalysts for CO oxidation: Nickel content effect and mechanism aspect. Appl. Catal. A Gen. 2015, 494, 77–86.

43

Guo, J.; Wang, Z.; Li, J.; Wang, Z. In–Ni intermetallic compounds derived from layered double hydroxides as efficient catalysts toward the reverse water gas shift reaction. AACS Catal. 2022, 4026–4036.

44

Davidson, A.; Tempere, J. F.; Che, M.; Roulet, H.; Dufour, G. Spectroscopic studies of nickel (II) and nickel (III) species generated upon thermal treatments of nickel/ceria-supported materials. J. Phys. Chem. 1996, 100, 4919–4929.

45

Xu, X. L.; Liu, L.; Tong, Y. Y.; Fang, X. Z.; Xu, J. W.; Jiang, D. E.; Wang, X. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: Unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catal. 2021, 11, 5762–5775.

46

Wang, F.; He, S.; Chen, H.; Wang, B.; Zheng, L. R.; Wei, M.; Evans, D. G.; Duan, X. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 2016, 138, 6298–6305.

47

Dostagir, N. H. M. D.; Rattanawan, R.; Gao, M.; Ota, J.; Hasegawa, J. Y.; Asakura, K.; Fukouka, A.; Shrotri, A. Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO. ACS Catal. 2021, 11, 9450–9461.

48

Chen, C. S.; Budi, C. S.; Wu, H. C.; Saikia, D.; Kao, H. M. Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation. ACS Catal. 2017, 7, 8367–8381.

49

Hongmanorom, P.; Ashok, J.; Zhang, G. H.; Bian, Z. F.; Wai, M. H.; Zeng, Y. Q.; Xi, S. B.; Borgna, A.; Kawi, S. Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts. Appl. Catal. B Environ. 2021, 282, 119564.

50

Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127–134.

51

Chen, Y. M.; Qiu, B. C.; Liu, Y.; Zhang, Y. An active and stable nickel-based catalyst with embedment structure for CO2 methanation. Appl. Catal. B: Environ. 2020, 269, 118801.

52

Jia, X. Y.; Zhang, X. S.; Rui, N.; Hu, X.; Liu, C. J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B Environ. 2019, 244, 159–169.

53

Bobadilla, L. F.; Santos, J. L.; Ivanova, S.; Odriozola, J. A.; Urakawa, A. Unravelling the role of oxygen vacancies in the mechanism of the reverse water–gas shift reaction by Operando DRIFTS and ultraviolet-visible spectroscopy. ACS Catal. 2018, 8, 7455–7467.

54

Binet, C.; Daturi, M.; Lavalley, J. C. Ir study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225.

File
12274_2022_4207_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 December 2021
Revised: 10 January 2022
Accepted: 30 January 2022
Published: 18 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Science and Technology Project of Shenzhen (No. JCYJ20190806155814624), the National Natural Science Foundation of China (No. 22002120) and the Fundamental Research Funds for the Central Universities (No. 3102017jc01001). We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM, TEM, XRD, and XPS characterizations.

Return