Journal Home > Volume 15 , Issue 7

Two-dimensional ferroelectric (2D-FE) materials that characterize the spontaneous ferroelectricity down to monolayer limit and rich ferroic properties arising from FE orderings, have been extensively explored as low-dimensional sensor, electric and memory devices. In current work, group-IV transition metal oxide dihalide MOX2 (M = Zr and Hf, X = Cl, Br and I) monolayers have been identified as a new group of 2D-FE materials. Using the comprehensive first-principles calculations combined with finite temperature Monte Carlo (MC) and ab initio molecular dynamics (MD) simulations, we investigate the temperature stability of FE polarization and further uncover the unique properties associated with spontaneous ferroelectricity of MOX2 monolayers. In particular, ZrOI2 monolayer, a promising 2D-FE material with room temperature stable ferroelectricity, semiconducting electronic structure and optoelectronic response under visible light, offers an ideal material platform to investigate the coupling of intrinsic anisotropy, optical absorption selectivity and spin degree of freedom with 2D ferroelectricity. Typically, significant optical absorption anisotropy and giant linear dichroism effect are predicted for a 2D optical polarizer device based on ZrOI2 monolayer, where the adsorption of incident monochromatic linearly polarized light (hv = 3.23 eV) along two planar directions with a nearly 100% optical selectivity can be achieved. Moreover, the spin–orbit coupling (SOC) induced spin splitting of valence band edges and out-of-plane textured spin configuration occur in ZrOI2 monolayer. In the meanwhile, the unidirectional spin–orbit field protected by C2v wave-vector point group can further create the persistent spin helix (PSH) state, leading to the extraordinarily long spin carrier lifetime. More importantly, the nonvolatile control of PSH state via the electric field induced polarization reversal has also been demonstrated for FE-ZrOI2 monolayer, which manifests as a great advantage for applications of ZrOI2 as the low-dimensional spin-field effect transistor and all-electric spintronics devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Linear dichroism and polarization controllable persistent spin helix in two-dimensional ferroelectric ZrOI2 monolayer

Show Author's information Niuzhuang Yang1,3Gaoyang Gou2,3( )Xiaoli Lu1,3Yue Hao1,3( )
School of Microelectronics, State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Collaborative Innovation Center of Quantum Information of Shaanxi Province, Xidian University, Xi’an 710071, China

Abstract

Two-dimensional ferroelectric (2D-FE) materials that characterize the spontaneous ferroelectricity down to monolayer limit and rich ferroic properties arising from FE orderings, have been extensively explored as low-dimensional sensor, electric and memory devices. In current work, group-IV transition metal oxide dihalide MOX2 (M = Zr and Hf, X = Cl, Br and I) monolayers have been identified as a new group of 2D-FE materials. Using the comprehensive first-principles calculations combined with finite temperature Monte Carlo (MC) and ab initio molecular dynamics (MD) simulations, we investigate the temperature stability of FE polarization and further uncover the unique properties associated with spontaneous ferroelectricity of MOX2 monolayers. In particular, ZrOI2 monolayer, a promising 2D-FE material with room temperature stable ferroelectricity, semiconducting electronic structure and optoelectronic response under visible light, offers an ideal material platform to investigate the coupling of intrinsic anisotropy, optical absorption selectivity and spin degree of freedom with 2D ferroelectricity. Typically, significant optical absorption anisotropy and giant linear dichroism effect are predicted for a 2D optical polarizer device based on ZrOI2 monolayer, where the adsorption of incident monochromatic linearly polarized light (hv = 3.23 eV) along two planar directions with a nearly 100% optical selectivity can be achieved. Moreover, the spin–orbit coupling (SOC) induced spin splitting of valence band edges and out-of-plane textured spin configuration occur in ZrOI2 monolayer. In the meanwhile, the unidirectional spin–orbit field protected by C2v wave-vector point group can further create the persistent spin helix (PSH) state, leading to the extraordinarily long spin carrier lifetime. More importantly, the nonvolatile control of PSH state via the electric field induced polarization reversal has also been demonstrated for FE-ZrOI2 monolayer, which manifests as a great advantage for applications of ZrOI2 as the low-dimensional spin-field effect transistor and all-electric spintronics devices.

Keywords: first-principles calculations, two-dimensional ferroelectricity, optical absorption anisotropy, spin-textured ferroelectrics, all-electric spintronics

References(80)

1

Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 1921, 17, 475–481.

2

Scott, J. F.; De Araujo, C. A. P. Ferroelectric memories. Science 1989, 246, 1400–1405.

3

Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136–138.

4

Martin, L. W.; Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2017, 2, 16087.

5

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

6

Belianinov, A.; He, Q.; Dziaugys, A.; Maksymovych, P.; Eliseev, E.; Borisevich, A.; Morozovska, A.; Banys, J.; Vysochanskii, Y.; Kalinin, S. V. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 2015, 15, 3808–3814.

7

Si, M. W.; Liao, P. Y.; Qiu, G.; Duan, Y. Q.; Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 2018, 12, 6700–6705.

8

Brehm, J. A.; Neumayer, S. M.; Tao, L.; O’Hara, A.; Chyasnavichus, M.; Susner, M. A.; McGuire, M. A.; Kalinin, S. V.; Jesse, S.; Ganesh, P. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 2020, 19, 43–48.

9

Zhao, M.; Gou, G. Y.; Ding, X. D.; Sun, J. An ultrathin two-dimensional vertical ferroelectric tunneling junction based on CuInP2S6 monolayer. Nanoscale 2020, 12, 12522–12530.

10

Wu, M. H.; Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241.

11

Fei, R. X.; Kang, W.; Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 2016, 117, 097601.

12

Wang, H.; Qian, X. F. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 2017, 4, 015042.

13

Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278.

14

Chang, K.; Kaloni, T. P.; Lin, H. C.; Bedoya-Pinto, A.; Pandeya, A. K.; Kostanovskiy, I.; Zhao, K.; Zhong, Y.; Hu, X. P.; Xue, Q. K. et al. Enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure. Adv. Mater. 2019, 31, 1804428.

15

Bao, Y.; Song, P.; Liu, Y. P.; Chen, Z. H.; Zhu, M. L.; Abdelwahab, I.; Su, J.; Fu, W.; Chi, X.; Yu, W. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 2019, 19, 5109–5117.

16

Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.

17

Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258.

18

Xue, F.; He, X.; Retamal, J. R. D.; Han, A.; Zhang, J. W.; Liu, Z. X.; Huang, J. K.; Hu, W. J.; Tung, V.; He, J. H. et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 2019, 31, 1901300.

19

Xiao, J.; Zhu, H. Y.; Wang, Y.; Feng, W.; Hu, Y. X.; Dasgupta, A.; Han, Y. M.; Wang, Y.; Muller, D. A.; Martin, L. W. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 2018, 120, 227601.

20

Xue, F.; Hu, W. J.; Lee, K. C.; Lu, L. S.; Zhang, J. W.; Tang, H. L.; Han, A. L.; Hsu, W. T.; Tu, S. B.; Chang, W. H. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 2018, 28, 1803738.

21

Io, W. F.; Yuan, S. G.; Pang, S. Y.; Wong, L. W.; Zhao, J.; Hao, J. H. Temperature-and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res. 2020, 13, 1897–1902.

22

Yuan, S. G.; Luo, X.; Chan, H. L.; Xiao, C. C.; Dai, Y. W.; Xie, M. H.; Hao, J. H. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 2019, 10, 1775.

23

Huang, F. T.; Lim, S. J.; Singh, S.; Kim, J.; Zhang, L. Y.; Kim, J. W.; Chu, M. W.; Rabe, K. M.; Vanderbilt, D.; Cheong, S. W. Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nat. Commun. 2019, 10, 4211.

24

Fei, Z. Y.; Zhao, W. J.; Palomaki, T. A.; Sun, B. S.; Miller, M. K.; Zhao, Z. Y.; Yan, J. Q.; Xu, X. D.; Cobden, D. H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336–339.

25

Sharma, P.; Xiang, F. X.; Shao, D. F.; Zhang, D. W.; Tsymbal, E. Y.; Hamilton, A. R.; Seidel, J. A room-temperature ferroelectric semimetal. Sci. Adv. 2019, 5, eaax5080.

26

You, L.; Liu, F. C.; Li, H. S.; Hu, Y. Z.; Zhou, S.; Chang, L.; Zhou, Y.; Fu, Q. D.; Yuan, G. L.; Dong, S. et al. In-plane ferroelectricity in thin flakes of van der Waals hybrid perovskite. Adv. Mater. 2018, 30, 1803249.

27

Lin, L. F.; Zhang, Y.; Moreo, A.; Dagotto, E.; Dong, S. Frustrated dipole order induces noncollinear proper ferrielectricity in two dimensions. Phys. Rev. Lett. 2019, 123, 067601.

28

Tan, H. X.; Li, M. L.; Liu, H. T.; Liu, Z. R.; Li, Y. C.; Duan, W. H. Two-dimensional ferromagnetic–ferroelectric multiferroics in violation of the d0 rule. Phys. Rev. B 2019, 99, 195434.

29

Zhang, Y.; Lin, L. F.; Moreo, A.; Alvarez, G.; Dagotto, E. Peierls transition, ferroelectricity, and spin-singlet formation in monolayer VOI2. Phys. Rev. B 2021, 103, L121114.

30

Peng, Q. J.; Li, D. Y.; Huang, P.; Ren, Y. Y.; Li, Z. X.; Pi, L. J.; Chen, P.; Wu, M. H.; Zhang, X. W.; Zhou, X. et al. Room-temperature ferroelectricity in 2D metal-tellurium-oxyhalide Cd7Te7Cl8O17 via selenium-induced selective-bonding growth. ACS Nano 2021, 15, 16525–16532.

31

Wu, M. H. Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano 2021, 15, 9229–9237.

32

Liu, Z.; Deng, L. J.; Peng, B. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Nano Res. 2021, 14, 1802–1813.

33

Qi, L.; Ruan, S. C.; Zeng, Y. J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33, 2005098.

34

Cheon, G.; Duerloo, K. A. N.; Sendek, A. D.; Porter, C.; Chen, Y.; Reed, E. J. Data mining for new two-and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 2017, 17, 1915–1923.

35

Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

36

Cheon, G.; Cubuk, E. D.; Antoniuk, E. R.; Blumberg, L.; Goldberger, J. E.; Reed, E. J. Revealing the spectrum of unknown layered materials with superhuman predictive abilities. J. Phys. Chem. Lett. 2018, 9, 6967–6972.

37

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

38

Jia, Y. L.; Zhao, M.; Gou, G. Y.; Zeng, X. C.; Li, J. Niobium oxide dihalides NbOX2: A new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity. Nanoscale Horiz. 2019, 4, 1113–1123.

39

Fang, Y. Q.; Wang, F. K.; Wang, R. Q.; Zhai, T. Y.; Huang, F. Q. 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties. Adv. Mater. 2021, 33, 2101505.

40

Chen, Z. Z.; Hu, Y.; Zhang, L. F.; Jiang, J.; Hawks, R.; Shi, J. Photoactive electrically switchable van der Waals semiconductor NbOI2. Appl. Phys. Lett. 2021, 119, 033103.

41

Hillebrecht, H.; Schmidt, P. J.; Rotter, H. W.; Thiele, G.; Zönnchen, P.; Bengel, H.; Cantow, H. J.; Magonov, S. N.; Whangbo, M. H. Structural and scanning microscopy studies of layered compounds MCl3 (M = Mo, Ru, Cr) and MOCl2 (M = V, Nb, Mo, Ru, Os). J. Alloys Compd. 1997, 246, 70–79.

42

Ai, H. Q.; Song, X. H.; Qi, S. Y.; Li, W. F.; Zhao, M. W. Intrinsic multiferroicity in two-dimensional VOCl2 monolayers. Nanoscale 2019, 11, 1103–1110.

43

Ruck, M. TaOI2: Eine zentrosymmetrische Variante der NbOI2-struktur. Acta Cryst. Sect. C 1995, 51, 1960–1962.

44

Zönnchen, P.; Thiele, G.; Hess, C.; Schlenker, C.; Bengel, H.; Cantow, H.; Magonov, S. N.; Seo, D. K.; Whangbo, M. H. Crystal structure, electronic band structure, electrical resistivity and scanning probe microscopy studies of layered compound MoOCl2. New J. Chem. 1996, 20, 295–300.

45

Domanov, V.; Zin, K.; Berdonosov, S.; Kopylova, I.; Lebedev, V. Y. Preparation of anhydrous oxychlorides ZrOCl2 and HfOCl2 by chemical vapor deposition and study of some their properties. Zhurnal Neorganicheskoj Khimii 1990, 35, 20–25.

46

Aimi, A.; Mori, D.; Hiraki, K. I., Takahashi, T.; Shan, Y. J.; Shirako, Y.; Zhou, J. S.; Inaguma, Y. High-pressure synthesis of A-site ordered double perovskite CaMnTi2O6 and ferroelectricity driven by coupling of A-site ordering and the second-order Jahn-Teller effect. Chem. Mater. 2014, 26, 2601–2608.

47

Park, M. H.; Lee, Y. H.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun. 2018, 8, 795–808.

48

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

49

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

50

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

51

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

52

Sun, J. W.; Ruzsinszky, A.; Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 2015, 115, 036402.

53

Sabatini, R.; Gorni, T.; De Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 2013, 87, 041108.

54

Peng, H. W.; Yang, Z. H.; Perdew, J. P.; Sun, J. W. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 2016, 6, 041005.

55

Chaput, L.; Togo, A.; Tanaka, I.; Hug, G. Phonon-phonon interactions in transition metals. Phys. Rev. B 2011, 84, 094302.

56

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

57

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

58

King-Smith, R. D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651–1654.

59

Schnering, H. G.; Wöhrle, H. Aufbau der halogenide und oxydhalogenide von Nb und Mo. Angew. Chem. 1963, 75, 684.

60

Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.

61

Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.

62

Zhao, J. L.; Ma, D. T.; Wang, C.; Guo, Z. N.; Zhang, B.; Li, J. Q.; Nie, G. H.; Xie, N.; Zhang, H. Recent advances in anisotropic two-dimensional materials and device applications. Nano Res. 2021, 14, 897–919.

63
Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, 1985.
64

Zhao, Y.; Gou, G. Y.; Lu, X. L.; Hao, Y. Intrinsic auxeticity and negative piezoelectricity in two-dimensional group-IV dipnictide monolayers with in-plane anisotropy. J. Mater. Chem. C 2021, 9, 6068–6077.

65

Blonsky, M. N.; Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 2015, 9, 9885–9891.

66

Li, W. B.; Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 2015, 8, 3796–3802.

67

Gao, W. W.; Chelikowsky, J. R. Prediction of intrinsic ferroelectricity and large piezoelectricity in monolayer arsenic chalcogenides. Nano Lett. 2020, 20, 8346–8352.

68

Grinberg, I.; West, D. V.; Torres, M.; Gou, G. Y.; Stein, D. M.; Wu, L. Y.; Chen, G. N.; Gallo, E. M.; Akbashev, A. R.; Davies, P. K. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512.

69

Zhao, M.; Wang, H.; Gou, G. Y.; Ding, X. D.; Sun, J. Emergence of bulk photovoltaic effect in anion-ordered perovskite sulfur diiodide MASbSI2 with spontaneous out-of-plane ferroelectricity. Mater. Today Phys. 2021, 21, 100459.

70

Shen, X. W.; Tong, W. Y.; Gong, S. J.; Duan, C. G. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials. 2D Mater. 2018, 5, 011001.

71

Tao, L. L.; Tsymbal, E. Y. Persistent spin texture enforced by symmetry. Nat. Commun. 2018, 9, 2763.

72

Tao, L. L.; Tsymbal, E. Y. Perspectives of spin-textured ferroelectrics. J. Phys. D: Appl. Phys. 2021, 54, 113001.

73

Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 1955, 100, 580–586.

74

Rashba, E. I. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 1960, 2, 1109–1122.

75

Ai, H. Q.; Ma, X. K.; Shao, X. F.; Li, W. F.; Zhao, M. W. Reversible out-of-plane spin texture in a two-dimensional ferroelectric material for persistent spin helix. Phys. Rev. Mater. 2019, 3, 054407.

76

Ye, Q.; Shen, Y. H.; Duan, C. G. Ferroelectric controlled spin texture in two-dimensional NbOI2 monolayer. Chin. Phys. Lett. 2021, 38, 087702.

77

Lee, H.; Im, J.; Jin, H. Emergence of the giant out-of-plane Rashba effect and tunable nanoscale persistent spin helix in ferroelectric SnTe thin films. Appl. Phys. Lett. 2020, 116, 022411.

78

Bernevig, B. A.; Orenstein, J.; Zhang, S. C. Exact SU(2) symmetry and persistent spin helix in a spin-orbit coupled system. Phys. Rev. Lett. 2006, 97, 236601.

79

Lu, X. Z.; Rondinelli, J. M. Discovery principles and materials for symmetry-protected persistent spin textures with long spin lifetimes. Matter 2020, 3, 1211–1225.

80

Kim, M.; Im, J.; Freeman, A. J.; Ihm, J.; Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl. Acad. Sci. USA 2014, 111, 6900–6904.

File
4206_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2021
Revised: 03 January 2022
Accepted: 24 January 2022
Published: 08 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Authors acknowledge the funding support from the National Science Foundation of China (No. 11574244), the Fundamental Research Funds for the Central Universities (No. xzy012020004). Work at Xidian University was supported by funding from the Natural Science Foundation of China (No. 61974113) and the National Key Research and Development Project (No. 2018YFB2202800). The National Supercomputer Center (NSCC) in Tianjin is acknowledged for computational support.

Return