Journal Home > Volume 15 , Issue 7

Perovskite single-crystal arrays have attracted intensive attention because of their great potentials for integrated optoelectronic devices. However, the traditional top-down lithography strategy requires complex processing and is detrimental to perovskite crystal structures, which is incompatible to directly pattern perovskite single crystals. Herein, we report a lithography-free method to realize the controllable growth of perovskite single-crystal arrays. Through introducing a printed hydrophilic-hydrophobic substrate into the crystallization system, the MAPbCl3 single-crystal arrays with precise location and uniform size are effectively fabricated. This method can be applied to prepare diverse perovskite single-crystal arrays, including MAPbBr3, CsPbCl3, CsPbBr3, Cs3Cu2I5, Cs3Bi2I9, and (BA)2(MA)3Pb4I11. The perovskite single crystals can be selectively grown on the electrodes to fabricate ultraviolet photodetectors. The strategy demonstrates a facile approach to fabricate large-scale perovskite single-crystal arrays and opens a pathway to produce diverse perovskite optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A general method for growth of perovskite single-crystal arrays for high performance photodetectors

Show Author's information Shiheng Wang1Zhenkun Gu1( )Rudai Zhao1Ting Zhang1Yunjie Lou1Lutong Guo2Meng Su2Lihong Li2Yiqiang Zhang1( )Yanlin Song2,3( )
Green Catalysis Center, and College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450051, China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Perovskite single-crystal arrays have attracted intensive attention because of their great potentials for integrated optoelectronic devices. However, the traditional top-down lithography strategy requires complex processing and is detrimental to perovskite crystal structures, which is incompatible to directly pattern perovskite single crystals. Herein, we report a lithography-free method to realize the controllable growth of perovskite single-crystal arrays. Through introducing a printed hydrophilic-hydrophobic substrate into the crystallization system, the MAPbCl3 single-crystal arrays with precise location and uniform size are effectively fabricated. This method can be applied to prepare diverse perovskite single-crystal arrays, including MAPbBr3, CsPbCl3, CsPbBr3, Cs3Cu2I5, Cs3Bi2I9, and (BA)2(MA)3Pb4I11. The perovskite single crystals can be selectively grown on the electrodes to fabricate ultraviolet photodetectors. The strategy demonstrates a facile approach to fabricate large-scale perovskite single-crystal arrays and opens a pathway to produce diverse perovskite optoelectronic devices.

Keywords: lithography-free, single-crystal arrays, hydrophilic-hydrophobic substrate, ultraviolet (UV) photodetector

References(42)

1

Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2022, 15, 85–103.

2

Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114.

3

Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

4

Meng, X. C.; Xing, Z.; Hu, X. T.; Huang, Z. Q.; Hu, T.; Tan, L. C.; Li, F. Y.; Chen, Y. W. Stretchable perovskite solar cells with recoverable performance. Angew. Chem., Int. Ed. 2020, 59, 16602–16608.

5

Chao, L. F.; Xia, Y. D.; Li, B. X.; Xing, G. C.; Chen, Y. H.; Huang, W. Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 2019, 5, 995–1006.

6

Liu, J.; Ge, Q. Q.; Zhang, W. F.; Ma, J. Y.; Ding, J.; Yu, G.; Hu, J. S. Highly π-extended copolymer as additive-free hole-transport material for perovskite solar cells. Nano Res. 2018, 11, 185–194.

7

Chao, L. F., Niu, T. T., Gao, W. Y., Ran, C. X., Song, L., Chen, Y. H., Huang, W. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater. 2021, 33, 2005410.

8

Shen, Y.; Liu, Y. C.; Ye, H. C.; Zheng, Y. T.; Wei, Q.; Xia, Y. D.; Chen, Y. H.; Zhao, K.; Huang, W.; Liu, S. Z. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem., Int. Ed. 2020, 59, 14896–14902.

9

Cao, F. R.; Liao, Q. L.; Deng, K. M.; Chen, L.; Li, L.; Zhang, Y. Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet–visible–near infrared (UV–Vis–NIR) photodetectors. Nano Res. 2018, 11, 1722–1730.

10

Yu, D. J.; Cao, F.; Gu, Y.; Han, Z. Y.; Liu, J. X.; Huang, B.; Xu, X. B.; Zeng, H. B. Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Res. 2021, 14, 1210–1217.

11

Chen, G. S., Qiu, Y. C., Gao, H. F., Zhao, Y. J., Feng, J. G., Jiang, L., Wu, Y. C. Air-stable highly crystalline formamidinium perovskite 1D structures for ultrasensitive photodetectors. Adv. Funct. Mater. 2020, 30, 1908894.

12

Zhao, Y. J.; Qiu, Y. C.; Feng, J. G.; Zhao, J. H.; Chen, G. S.; Gao, H. F.; Zhao, Y. Y.; Jiang, L.; Wu, Y. C. Chiral 2D-perovskite nanowires for stokes photodetectors. J. Am. Chem. Soc. 2021, 143, 8437–8445.

13

Xing, J.; Zhao, Y. B.; Askerka, M.; Quan, L. N.; Gong, X. W.; Zhao, W. J.; Zhao, J. X.; Tan, H. R.; Long, G. K.; Gao, L. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 2018, 9, 3541.

14

Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBrxI3−x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.

15

Han, X.; Wu, W. Q.; Chen, H.; Peng, D. F.; Qiu, L.; Yan, P. G.; Pan, C. F. Metal halide perovskite arrays: From construction to optoelectronic applications. Adv. Funct. Mater. 2021, 31, 2005230.

16

Xu, X. Z.; Deng, W.; Zhang, X. J.; Huang, L. M.; Wang, W.; Jia, R. F.; Wu, D.; Zhang, X. H.; Jie, J. S.; Lee, S. T. Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 2019, 13, 5910–5919.

17

Zhang, J. S.; Guo, Q.; Li, X.; Li, C.; Wu, K.; Abrahams, I.; Yan, H. X.; Knight, M. M.; Humphreys, C. J.; Su, L. Solution-processed epitaxial growth of arbitrary surface nanopatterns on hybrid perovskite monocrystalline thin films. ACS Nano 2020, 14, 11029–11039.

18

Lin, C. H.; Cheng, B.; Li, T. Y.; Retamal, J. R. D.; Wei, T. C.; Fu, H. C.; Fang, X. S.; He, J. H. Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 2019, 13, 1168–1176.

19

Liu, W. F.; Wang, J. B.; Xu, X. Z.; Zhao, C. Z.; Xu, X. B.; Weiss, P. S. Single-step dual-layer photolithography for tunable and scalable nanopatterning. ACS Nano 2021, 15, 12180–12188.

20

Lin, C. K.; Zhao, Q. C.; Zhang, Y.; Cestellos-Blanco, S.; Kong, Q.; Lai, M. L.; Kang, J.; Yang, P. D. Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 2020, 14, 3500–3508.

21

Li, S. X.; Xu, Y. S.; Li, C. L.; Guo, Q.; Wang, G.; Xia, H.; Fang, H. H.; Shen, L.; Sun, H. B. Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 2020, 32, 2001998.

22

Lan, S. G.; Peng, Y. Y.; Shen, H. Z.; Wang, S.; Ren, J. W.; Zheng, Z. P.; Liu, W. W.; Li, D. H. Seeds-assisted space-confined growth of all-inorganic perovskite arrays for ultralow-threshold single-mode lasing. Laser Photonics Rev. 2021, 15, 2000428.

23

Du, H. G.; Wang, K. Y.; Zhao, L. D.; Xue, C.; Zhang, M. Y.; Wen, W. J.; Xing, G. C.; Wu, J. B. Size-controlled patterning of single-crystalline perovskite arrays toward a tunable high-performance microlaser. ACS Appl. Mater. Interfaces 2020, 12, 2662–2670.

24

Gao, H. F.; Feng, J. G.; Pi, Y. Y.; Zhou, Z. H.; Zhang, B.; Wu, Y. C.; Wang, X. D.; Jiang, X. Y.; Jiang, L. Bandgap engineering of single-crystalline perovskite arrays for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1804349.

25

Li, C.; Li, J. X.; Li, C. Y.; Wang, J.; Tong, X. W.; Zhang, Z. X.; Yin, Z. P.; Wu, D.; Luo, L. B. Sensitive photodetector arrays based on patterned CH3NH3PbBr3 single crystal microplate for image sensing application. Adv. Opt. Mater. 2021, 9, 2100371.

26

Yang, Z.; Lu, J. F.; ZhuGe, M. H.; Cheng, Y.; Hu, J. F.; Li, F. T.; Qiao, S.; Zhang, Y. F.; Hu, G. F.; Yang, Q. et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing. Adv. Mater. 2019, 31, 1900647.

27

Li, S. J.; Ding, H. Y.; Cai, H. B.; Zhao, H.; Zhao, Y. L.; Yang, J. L.; Jin, Y.; Pan, N.; Wang, X. P. Realizing CsPbBr3 light-emitting diode arrays based on PDMS template confined solution growth of single-crystalline perovskite. J. Phys. Chem. Lett. 2020, 11, 8275–8282.

28

Deng, W.; Jie, J. S.; Xu, X. Z.; Xiao, Y. L.; Lu, B.; Zhang, X. J.; Zhang, X. H. A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 2020, 32, 1908340.

29

Zhong, Y. G.; Liao, K.; Du, W. N.; Zhu, J. R.; Shang, Q. Y.; Zhou, F.; Wu, X. X.; Sui, X. Y.; Shi, J. W.; Yue, S. et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano 2020, 14, 15605–15615.

30

Kim, G.; An, S.; Hyeong, S. K.; Lee, S. K.; Kim, M.; Shin, N. Perovskite pattern formation by chemical vapor deposition using photolithographically defined templates. Chem. Mater. 2019, 31, 8212–8221.

31

Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic–inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 2016, 3, 1600137.

32

Sun, Y.; Yin, Y.; Pols, M.; Zhong, J. X.; Huang, Z.; Liu, B. W.; Liu, J. Q.; Wang, W.; Xie, H. G.; Zhan, G. X. et al. Engineering the phases and heterostructures of ultrathin hybrid perovskite nanosheets. Adv. Mater. 2020, 32, 2002392.

33

Feng, J. G.; Yan, X. X.; Zhang, Y. F.; Wang, X. D.; Wu, Y. C.; Su, B.; Fu, H. B.; Jiang, L. “Liquid knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 2016, 28, 3732–3741.

34

Wang, G. M.; Li, D. H.; Cheng, H. C.; Li, Y. J.; Chen, C. Y.; Yin, A. X.; Zhao, Z. P.; Lin, Z. Y.; Wu, H.; He, Q. Y. et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 2015, 1, e1500613.

35

Gu, Z. K.; Wang, K.; Li, H. Z.; Gao, M.; Li, L. H.; Kuang, M. X.; Zhao, Y. S.; Li, M. Z.; Song, Y. L. Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 2017, 13, 1603217.

36

Yang, D. C.; Xie, C.; Xu, X. H.; You, P.; Yan, F.; Yu, S. F. Lasing characteristics of CH3NH3PbCl3 single-crystal microcavities under multiphoton excitation. Adv. Opt. Mater. 2018, 6, 1700992.

37

Lee, J. W.; Dai, Z. H.; Lee, C.; Lee, H. M.; Han, T. H.; De Marco, N.; Lin, O.; Choi, C. S.; Dunn, B.; Koh, J. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 2018, 140, 6317–6324.

38

Cheng, Z.; Liu, K. W.; Yang, J. L.; Chen, X.; Xie, X. H.; Li, B. H.; Zhang, Z. Z.; Liu, L.; Shan, C. X.; Shen, D. Z. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS Appl. Mater. Interfaces 2019, 11, 34144–34150.

39

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

40

Adinolfi, V.; Ouellette, O.; Saidaminov, M. I.; Walters, G.; Abdelhady, A. L.; Bakr, O. M.; Sargent, E. H. Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv. Mater. 2016, 28, 7264–7268.

41

Cheng, X. H.; Jing, L.; Zhao, Y.; Du, S. J.; Ding, J. X.; Zhou, T. L. Crystal orientation-dependent optoelectronic properties of MAPbCl3 single crystals. J. Mater. Chem. C 2018, 6, 1579–1586.

42

Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Bakr, O. M. CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 2015, 6, 3781–3786.

File
12274_2022_4205_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 December 2021
Revised: 15 January 2022
Accepted: 28 January 2022
Published: 28 March 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200), the National Natural Science Foundation of China (NSFC, Nos. 91963212, 52103236, 51773206, 21875260, and 51961145102 [BRICS project]), K. C. Wong Education Foundation, Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202005), the China Postdoctoral Science Foundation (No. 2021TQ0285), and Outstanding Young Talent Research Fund of Zhengzhou University. The authors also thank the Advanced Analysis & Computation Center at Zhengzhou University for materials and device characterization support.

Return