Journal Home > Volume 15 , Issue 7

Direct ink writing (DIW) has recently emerged as an appealing method for designing and fabricating three-dimensional (3D) objects. Complex 3D structures can be built layer-by-layer via digitally controlled extrusion and deposition of aqueous-based colloidal pastes. The formulation of well-dispersed suspensions with specific rheological behaviors is a prerequisite for the use of this route. In this review article, the fundamental concepts of DIW are presented, including the operation principles and basic features. Typical strategies used for ink formulation are discussed with a focus on the most widely used electrode materials, including graphene, Mxenes, and carbon nanotubes. The recent progress in printing design of emerging energy storage systems, encompassing rechargeable batteries, supercapacitors, and hybrid capacitors, is summarized. Challenges and future perspectives are also covered to provide guidance for the future development of DIW.


menu
Abstract
Full text
Outline
About this article

Direct ink writing of conductive materials for emerging energy storage systems

Show Author's information Ting Huang1,2,3Wenfeng Liu1,2Chenliang Su3Ya-yun Li1( )Jingyu Sun2( )
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Shenzhen University, Shenzhen 518060, China
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, China

Abstract

Direct ink writing (DIW) has recently emerged as an appealing method for designing and fabricating three-dimensional (3D) objects. Complex 3D structures can be built layer-by-layer via digitally controlled extrusion and deposition of aqueous-based colloidal pastes. The formulation of well-dispersed suspensions with specific rheological behaviors is a prerequisite for the use of this route. In this review article, the fundamental concepts of DIW are presented, including the operation principles and basic features. Typical strategies used for ink formulation are discussed with a focus on the most widely used electrode materials, including graphene, Mxenes, and carbon nanotubes. The recent progress in printing design of emerging energy storage systems, encompassing rechargeable batteries, supercapacitors, and hybrid capacitors, is summarized. Challenges and future perspectives are also covered to provide guidance for the future development of DIW.

Keywords: energy storage, direct ink writing, ink formulation, conductive materials, structure–performance relationship

References(181)

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.

3

Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

4

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

5

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

6

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

7

Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

8

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

9

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

10

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

11

Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

12

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.

13

Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J. H.; Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat. Chem. 2012, 4, 1004–1010.

14

Zhu, J. Z.; Wang, F.; Wang, B. Z.; Wang, Y. W.; Liu, J. J.; Zhang, W. Q.; Wen, Z. Y. Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery. J. Am. Chem. Soc. 2015, 137, 13572–13579.

15

Lu, J.; Lee, Y. J.; Luo, X. Y.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J. G.; Zhai, D. Y.; Chen, Z. H., et al. A lithium-oxygen battery based on lithium superoxide. Nature 2016, 529, 377–382.

16

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A., et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

17

Han, J. M.; Fu, Q.; Xi, B. J.; Ni, X. Y.; Yan, C. L.; Feng, J. K.; Xiong, S. L. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium-sulfur batteries. J. Energy Chem. 2021, 52, 1–11.

18

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

19

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

20

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

21

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

22

Zhang, Q.; Lu, Y. Y.; Miao, L. C.; Zhao, Q.; Xia, K. X.; Liang, J.; Chou, S. L.; Chen, J. An alternative to lithium metal anodes: Non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries. Angew. Chem., Int. Ed. 2018, 57, 14796–14800.

23

Wang, Y. G.; Yi, J.; Xia, Y. Y. Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2012, 2, 830–840.

24

Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

25

Guo, Z. W.; Zhao, Y.; Ding, Y. X.; Dong, X. L.; Chen, L.; Cao, J. Y.; Wang, C. C.; Xia, Y. Y.; Peng, H. S.; Wang, Y. G. Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 2017, 3, 348–362.

26

Wan, F.; Niu, Z. Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16358–16367.

27

Wu, X. Y.; Ji, X. L. Aqueous batteries get energetic. Nat. Chem. 2019, 11, 680–681.

28

Zhang, H.; Liu, X.; Li, H. H.; Hasa, I.; Passerini, S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 598–616.

29

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

30

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

31

Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

32

Yan, J.; Li, S. H.; Lan, B. B.; Wu, Y. C.; Lee, P. S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564.

33

Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

34

Ding, H. B.; Zhang, Q. M.; Gu, H. C.; Liu, X. J.; Sun, L. T.; Gu, M.; Gu, Z. Z. Controlled microstructural architectures based on smart fabrication strategies. Adv. Funct. Mater. 2020, 30, 1901760.

35

Tofail, S. A. M.; Koumoulos, E. P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37.

36

Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B. Eng. 2018, 143, 172–196.

37

Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y. Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418–431.

38

Fu, K.; Yao, Y. G.; Dai, J. Q.; Hu, L. B. Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 2017, 29, 1603486.

39

Lee, C. Y.; Taylor, A. C.; Nattestad, A.; Beirne, S.; Wallace, G. G. 3D printing for electrocatalytic applications. Joule 2019, 3, 1835–1849.

40

Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120, 2783–2810.

41

Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F., et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.

42

Freyman, M. C.; Kou, T. Y.; Wang, S. W.; Li, Y. 3D printing of living bacteria electrode. Nano Res. 2020, 13, 1318–1323.

43

Chandrasekaran, S.; Yao, B.; Liu, T. Y.; Xiao, W.; Song, Y.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Li, Y., et al. Direct ink writing of organic and carbon aerogels. Mater. Horiz. 2018, 5, 1166–1175.

44

Zhao, J. X.; Zhang, Y.; Zhao, X. X.; Wang, R. T.; Xie, J. X.; Yang, C. F.; Wang, J. J.; Zhang, Q. C.; Li, L. L.; Lu, C. H., et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv. Funct. Mater. 2019, 29, 1900809.

45

Wan, X.; Luo, L.; Liu, Y. J.; Leng, J. S. Direct ink writing based 4D printing of materials and their applications. Adv. Sci. 2020, 7, 2001000.

46

Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755.

47

Tian, X. C.; Jin, J.; Yuan, S. Q.; Chua, C. K.; Tor, S. B.; Zhou, K. Emerging 3D-printed electrochemical energy storage devices: A critical review. Adv. Energy Mater. 2017, 7, 1700127.

48

Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M., et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.

49

Zeng, M. X.; Zhang, Y. L. Colloidal nanoparticle inks for printing functional devices: Emerging trends and future prospects. J. Mater. Chem. A 2019, 7, 23301–23336.

50

Choi, K. H.; Ahn, D. B.; Lee, S. Y. Current status and challenges in printed batteries: Toward form factor-free, monolithic integrated power sources. ACS Energy Lett. 2018, 3, 220–236.

51

Ahn, D. B.; Lee, S. S.; Lee, K. H.; Kim, J. H.; Lee, J. W.; Lee, S. Y. Form factor-free, printed power sources. Energy Storage Mater. 2020, 29, 92–112.

52

Zhang, X.; Ju, Z. Y.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 2021, 11, 2000808.

53

Lethien, C.; Le Bideau, J.; Brousse, T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 2019, 12, 96–115.

54

Pang, Y. K.; Cao, Y. T.; Chu, Y. H.; Liu, M. H.; Snyder, K.; MacKenzie, D.; Cao, C. Y. Additive manufacturing of batteries. Adv. Funct. Mater. 2019, 30, 1906244.

55

Torrisi, F.; Carey, T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 2018, 23, 73–96.

56

Boger, D. V. An introduction to rheology: By H.A. Barnes, J.F. Hutton and K. Walters, Elsevier Science Publishers B.V., Amsterdam, x + 200 pp., price Dfl. 175 (hardcover, ISBN 0-444-87140-3) or Dfl. 115 (paperback, ISBN 0-444-87469-0); students’ pack of 5 paperback copies: Dfl. 475 (students’ packs are not available in U.S.A. and Canada). J. Non-Newton. Fluid Mech. 1989, 32, 331–333.

57

Li, H. P.; Liang, J. J. Recent development of printed micro-supercapacitors: Printable materials, printing technologies, and perspectives. Adv. Mater. 2020, 32, 1805864.

58

Herschel, W. H.; Bulkley, R. Measurement of consistency as applied to rubber benzene solutions. Kolloid-Zeitschrift 1926, 39, 291–300.

59

Shao, Y. Y.; Sun, Z. T.; Tian, Z. N.; Li, S.; Wu, G. Q.; Wang, M. L.; Tong, X. L.; Shen, F.; Xia, Z.; Tung, V., et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 2021, 31, 2007843.

60

Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459–470.

61

Hu, G. H.; Kang, J.; Ng, L. W. T.; Zhu, X. X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265–3300.

62

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

63

Fan, X. B.; Zhang, G. L.; Zhang, F. B. Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 2015, 44, 3023–3035.

64

Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216.

65

Fu, W. Y.; Jiang, L.; Van Geest, E. P.; Lima, L. M. C.; Schneider, G. F. Sensing at the surface of graphene field-effect transistors. Adv. Mater. 2017, 29, 1603610.

66

Vikrant, K.; Kumar, V.; Kim, K. H. Graphene materials as a superior platform for advanced sensing strategies against gaseous ammonia. J. Mater. Chem. A 2018, 6, 22391–22410.

67

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

68

Wang, B.; Ruan, T. T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D. L.; Dou, S. X. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020, 24, 22–51.

69

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

70

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

71

Chen, D.; Feng, H. B.; Li, J. H. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053.

72

Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312.

73

Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin III, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Graphene oxide dispersions: Tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326–331.

74

Wang, T.; Tian, X. C.; Li, L.; Lu, L. H.; Hou, S. E.; Cao, G. Z.; Jin, H. Y. 3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors. J. Mater. Chem. A 2020, 8, 1749–1756.

75

Li, W. B.; Li, Y. H.; Su, M.; An, B. X.; Liu, J.; Su, D.; Li, L. H.; Li, F. Y.; Song, Y. L. Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J. Mater. Chem. A 2017, 5, 16281–16288.

76

García-Tuñon, E.; Barg, S.; Franco, J.; Bell, R.; Eslava, S.; D'Elia, E.; Maher, R. C.; Guitian, F.; Saiz, E. Printing in three dimensions with graphene. Adv. Mater. 2015, 27, 1688–1693.

77

Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 2015, 9, 4636–4648.

78

Zhu, C.; Han, T. Y.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

79

Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.

80

Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; Xi, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.

81

Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.

82

Jiang, Y.; Shao, H. B.; Li, C. X.; Xu, T.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Versatile graphene oxide putty-like material. Adv. Mater. 2016, 28, 10287–10292.

83

Nan, J. X.; Guo, X.; Xiao, J.; Li, X.; Chen, W. H.; Wu, W. J.; Liu, H.; Wang, Y.; Wu, M. H.; Wang, G. X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085.

84

Huang, W. C.; Hu, L. P.; Tang, Y. F.; Xie, Z. J.; Zhang, H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 2020, 30, 2005223.

85

Zhang, C. F.; McKeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C., et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

86

Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.

87

Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N. J.; Kumbur, E. C.; Gogotsi, Y. Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano 2018, 12, 2685–2694.

88

Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W., et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

89

Fan, Z. D.; Jin, J.; Li, C.; Cai, J. S.; Wei, C. H.; Shao, Y. L.; Zou, G. F.; Sun, J. Y. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 2021, 15, 3098–3107.

90

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

91

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

92

Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

93

Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

94

Zhang, X. H.; Lu, W. B.; Zhou, G. H.; Li, Q. W. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 2020, 32, 1902028.

95

Wang, Y. L.; Zhang, Y.; Wang, G. L.; Shi, X. W.; Qiao, Y. D.; Liu, J. M.; Liu, H. G.; Ganesh, A.; Li, L. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 2020, 30, 1907284.

96

Chen, B. L.; Jiang, Y. Z.; Tang, X. H.; Pan, Y. Y.; Hu, S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 2017, 9, 28433–28440.

97

Yu, W.; Zhou, H.; Li, B. Q.; Ding, S. J. 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 4597–4604.

98

Sun, C.; Liu, S. R.; Shi, X. L.; Lai, C.; Liang, J. J.; Chen, Y. S. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 2020, 381, 122641.

99

Liu, C. Y.; Xu, F.; Cheng, X. X.; Tong, J. D.; Liu, Y. L.; Chen, Z. W.; Lao, C. S.; Ma, J. Comparative study on the electrochemical performance of LiFePO4 cathodes fabricated by low temperature 3D printing, direct ink writing and conventional roller coating process. Ceram. Int. 2019, 45, 14188–14197.

100

Zhang, C.; Shen, K.; Li, B.; Li, S. M.; Yang, S. B. Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. J. Mater. Chem. A 2018, 6, 19960–19966.

101

Wang, J. W.; Sun, Q.; Gao, X. J.; Wang, C. H.; Li, W. H.; Holness, F. B.; Zheng, M.; Li, R. Y.; Price, A. D.; Sun, X. H., et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach. ACS Appl. Mater. Interfaces 2018, 10, 39794–39801.

102

Li, J.; Liang, X. H.; Liou, F.; Park, J. Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing. Sci. Rep. 2018, 8, 1846.

103

Liu, C. Y.; Cheng, X. X.; Li, B. H.; Chen, Z. W.; Mi, S. L.; Lao, C. S. Fabrication and characterization of 3D-printed highly-porous 3D LiFePO4 electrodes by low temperature direct writing process. Materials 2017, 10, 934.

104

Li, J.; Leu, M. C.; Panat, R.; Park, J. A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing. Mater. Des. 2017, 119, 417–424.

105

Kohlmeyer, R. R.; Blake, A. J.; Hardin, J. O.; Carmona, E. A.; Carpena-Núñez, J.; Maruyama, B.; Daniel Berrigan, J.; Huang, H.; Durstock, M. F. Composite batteries: A simple yet universal approach to 3D printable lithium-ion battery electrodes. J. Mater. Chem. A 2016, 4, 16856–16864.

106

Hu, J. T.; Jiang, Y.; Cui, S. H.; Duan, Y. D.; Liu, T. C.; Guo, H.; Lin, L. P.; Lin, Y.; Zheng, J. X.; Amine, K., et al. 3D-printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv. Energy Mater. 2016, 6, 1600856.

107

Izumi, A.; Sanada, M.; Furuichi, K.; Teraki, K.; Matsuda, T.; Hiramatsu, K.; Munakata, H.; Kanamura, K. Development of high capacity lithium-ion battery applying three-dimensionally patterned electrode. Electrochim. Acta 2012, 79, 218–222.

108

Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 2018, 30, 1703027.

109

Park, J. S.; Kim, T.; Kim, W. S. Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci. Rep. 2017, 7, 3246.

110

Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y. A.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T., et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587–2594.

111

Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543.

112

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Fan, Z. D.; Jin, J.; Wang, M. L.; Sun, J. Y. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv. Funct. Mater. 2021, 31, 2006798.

113

Cai, J. S.; Fan, Z. D.; Jin, J.; Shi, Z. X.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity. Nano Energy 2020, 75, 104970.

114

Gao, X. J.; Yang, X. F.; Sun, Q.; Luo, J.; Liang, J. N.; Li, W. H.; Wang, J. W.; Wang, S. Z.; Li, M. S.; Li, R. Y., et al. Converting a thick electrode into vertically aligned “Thin electrodes” by 3D-printing for designing thickness independent Li-S cathode. Energy Storage Mater. 2020, 24, 682–688.

115

Chen, C. L.; Jiang, J. M.; He, W. J.; Lei, W.; Hao, Q. L.; Zhang, X. G. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv. Funct. Mater. 2020, 30, 1909469.

116

Gao, X. J.; Sun, Q.; Yang, X. F.; Liang, J. N.; Koo, A.; Li, W. H.; Liang, J. W.; Wang, J. W.; Li, R. Y.; Holness, F. B., et al. Toward a remarkable Li-S battery via 3D printing. Nano Energy 2019, 56, 595–603.

117

Shen, K.; Mei, H. L.; Li, B.; Ding, J. W.; Yang, S. B. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.

118

Wei, C. H.; Tian, M.; Wang, M. L.; Shi, Z. X.; Yu, L. H.; Li, S.; Fan, Z. D.; Yang, R. Z.; Sun, J. Y. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 2020, 14, 16073–16084.

119

Lyu, Z.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 2019, 29, 1806658.

120

Lacey, S. D.; Kirsch, D. J.; Li, Y. J.; Morgenstern, J. T.; Zarket, B. C.; Yao, Y. G.; Dai, J. Q.; Garcia, L. Q.; Liu, B. Y.; Gao, T. T., et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 2018, 30, 1705651.

121

Qiao, Y.; Liu, Y.; Chen, C. J.; Xie, H.; Yao, Y. G.; He, S. M.; Ping, W. W.; Liu, B. Y.; Hu, L. B. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2018, 28, 1805899.

122

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

123

Zhou, L. M.; Zhang, K.; Hu, Z.; Tao, Z. L.; Mai, L. Q.; Kang, Y. M.; Chou, S. L.; Chen, J. Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1701415.

124

Ouyang, J. Application of intrinsically conducting polymers in flexible electronics. SmartMat 2021, 2, 263–285.

125

Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

126

Bao, Y. H.; Liu, Y.; Kuang, Y. D.; Fang, D. N.; Li, T. 3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy Storage Mater. 2020, 33, 55–61.

127

Wang, Y. B.; Chen, C. J.; Xie, H.; Gao, T. T.; Yao, Y. G.; Pastel, G.; Han, X. G.; Li, Y. J.; Zhao, J. P.; Fu, K., et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27, 1703140.

128

Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A., et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518–524.

129

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

130

Lim, W. G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757.

131

Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

132

Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.

133

Liu, G. Z.; Huang, M.; Zhang, Z. C. Y.; Xi, B. J.; Li, H. B.; Xiong, S. L. Robust S-doped TiO2@N, S-codoped carbon nanotube arrays as free-binder anodes for efficient sodium storage. J. Energy Chem. 2021, 53, 175–184.

134

Huang, M.; Xi, B. J.; Shi, N. X.; Feng, J. K.; Qian, Y. T.; Xue, D. F.; Xiong, S. L. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2020, 2, 2000085.

135

Ding, J. W.; Shen, K.; Du, Z. G.; Li, B.; Yang, S. B. 3D-printed hierarchical porous frameworks for sodium storage. ACS Appl. Mater. Interfaces 2017, 9, 41871–41877.

136

Lu, C.; Sun, Z. T.; Yu, L. H.; Lian, X. Y.; Yi, Y. Y.; Li, J.; Liu, Z. F.; Dou, S. X.; Sun, J. Y. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 2020, 10, 2001161.

137

Zhang, J.; Li, X. L.; Fan, S.; Huang, S. Z.; Yan, D.; Liu, L.; Alvarado, P. V. Y.; Yang, H. Y. 3D-printed functional electrodes towards Zn-air batteries. Mater. Today Energy 2020, 16, 100407.

138

Ma, T. C.; Devin MacKenzie, J. Fully printed, high energy density flexible zinc-air batteries based on solid polymer electrolytes and a hierarchical catalyst current collector. Flex. Print. Electron. 2019, 4, 015010.

139

Wang, X.; Zhang, Z. C. Y.; Xi, B. J.; Chen, W. H.; Jia, Y. X.; Feng, J. K.; Xiong, S. L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 2021, 15, 9244–9272.

140

Ma, H.; Tian, X. C.; Wang, T.; Tang, K.; Liu, Z. X.; Hou, S. E.; Jin, H. Y.; Cao, G. Z. Tailoring pore structures of 3D printed cellular high-loading cathodes for advanced rechargeable zinc-ion batteries. Small 2021, 17, 2100746.

141

Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L., et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.

142

Lyu, Z.; Lim, G. J. H.; Guo, R.; Pan, Z. H.; Zhang, X.; Zhang, H.; He, Z. M.; Adams, S.; Chen, W.; Ding, J., et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 2020, 24, 336–342.

143

Shen, K.; Li, B.; Yang, S. B. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 2020, 24, 670–675.

144

Lim, G. J. H.; Lyu, Z.; Zhang, X.; Koh, J. J.; Zhang, Y.; He, C. B.; Adams, S.; Wang, J.; Ding, J. Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 2020, 8, 9058–9067.

145

Yu, Y. K.; Wang, Z. Y.; Hou, Z.; Ta, W. R.; Wang, W. H.; Zhao, X. X.; Li, Q.; Zhao, Y. S.; Zhang, Q. Q.; Quan, Z. W. 3D printing of hierarchical graphene lattice for advanced Na metal anodes. ACS Appl. Energy Mater. 2019, 2, 3869–3877.

146

Yan, J.; Zhi, G.; Kong, D. Z.; Wang, H.; Xu, T. T.; Zang, J. H.; Shen, W. X.; Xu, J. M.; Shi, Y. M.; Dai, S. G., et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A 2020, 8, 19843–19854.

147

Li, M.; Liu, T. C.; Bi, X. X.; Chen, Z. W.; Amine, K.; Zhong, C.; Lu, J. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 2020, 49, 1688–1705.

148

Liu, D. H.; Bai, Z. Y.; Li, M.; Yu, A. P.; Luo, D.; Liu, W. W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. W. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem. Soc. Rev. 2020, 49, 5407–5445.

149

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

150

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M., et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

151

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

152

Jin, D.; Park, J.; Ryou, M. H.; Lee, Y. M. Structure-controlled Li metal electrodes for post-Li-ion batteries: Recent progress and perspectives. Adv. Mater. Interfaces 2020, 7, 1902113.

153

Park, S.; Jin, H. J.; Yun, Y. S. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv. Mater. 2020, 32, 2002193.

154

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

155

Cai, J. S.; Jin, J.; Fan, Z. D.; Li, C.; Shi, Z. X.; Sun, J. Y.; Liu, Z. F. 3D printing of a V8C7–VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, 2005967.

156

Wei, C. H.; Tian, M.; Fan, Z. D.; Yu, L. H.; Song, Y. Z.; Yang, X. Z.; Shi, Z. X.; Wang, M. L.; Yang, R. Z.; Sun, J. Y. Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries. Energy Storage Mater. 2021, 41, 141–151.

157

Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.

158

Yun, X. W.; Lu, B. C.; Xiong, Z. Y.; Jia, B.; Tang, B.; Mao, H. A.; Zhang, T.; Wang, X. G. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv. 2019, 9, 29384–29395.

159

Yu, L. H.; Fan, Z. D.; Shao, Y. L.; Tian, Z. N.; Sun, J. Y.; Liu, Z. F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839.

160

Yang, W. J.; Yang, J.; Byun, J. J.; Moissinac, F. P.; Xu, J. Q.; Haigh, S. J.; Domingos, M.; Bissett, M. A.; Dryfe, R. A. W.; Barg, S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725.

161

Wang, T.; Li, L.; Tian, X. C.; Jin, H. Y.; Tang, K.; Hou, S. E.; Zhou, H.; Yu, X. H. 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim. Acta 2019, 319, 245–252.

162

Tian, X. C.; Tang, K.; Jin, H. Y.; Wang, T.; Liu, X. W.; Yang, W.; Zou, Z. C.; Hou, S. E.; Zhou, K. Boosting capacitive charge storage of 3D-printed micro-pseudocapacitors via rational holey graphene engineering. Carbon 2019, 155, 562–569.

163

Ma, C. X.; Wang, R. X.; Tetik, H.; Gao, S. J.; Wu, M.; Tang, Z. Y.; Lin, D.; Ding, D.; Wu, W. Z. Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems. Nano Energy 2019, 66, 104124.

164

Gao, T. T.; Zhou, Z.; Yu, J. Y.; Zhao, J.; Wang, G. L.; Cao, D. X.; Ding, B.; Li, Y. J. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 2019, 9, 1802578.

165

Zhang, Y.; Ji, T. X.; Hou, S. H.; Zhang, L. F.; Shi, Y. H.; Zhao, J. X.; Xu, X. H. All-printed solid-state substrate-versatile and high-performance micro-supercapacitors for in situ fabricated transferable and wearable energy storage via multi-material 3D printing. J. Power Sources 2018, 403, 109–117.

166

Wang, Z. S.; Zhang, Q. E.; Long, S. C.; Luo, Y. X.; Yu, P. K.; Tan, Z. B.; Bai, J.; Qu, B. H.; Yang, Y.; Shi, J., et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 10437–10444.

167

Wang, W. J.; Zhang, Y.; Zhang, L. F.; Shi, Y. H.; Jia, L. M.; Zhang, Q.; Xu, X. H. Flexible Mn3O4 nanosheet/reduced graphene oxide nanosheet paper-like electrodes for electrochemical energy storage and three-dimensional multilayers printing. Mater. Lett. 2018, 213, 100–103.

168

Rocha, V. G.; García-Tuñón, E.; Botas, C.; Markoulidis, F.; Feilden, E.; DoElia, E.; Ni, N.; Shaffer, M.; Saiz, E. Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. ACS Appl. Mater. Interfaces 2017, 9, 37136–37145.

169

Lin, Y.; Liu, F.; Casano, G.; Bhavsar, R.; Kinloch, I. A.; Derby, B. Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 2016, 28, 7993–8000.

170

Nathan-Walleser, T.; Lazar, I. M.; Fabritius, M.; Tölle, F. J.; Xia, Q.; Bruchmann, B.; Venkataraman, S. S.; Schwab, M. G.; Mülhaupt, R. 3D micro-extrusion of graphene-based active electrodes: Towards high-rate AC line filtering performance electrochemical capacitors. Adv. Funct. Mater. 2014, 24, 4706–4716.

171

Yuan, S. J.; Fan, W.; Wang, D.; Zhang, L. S.; Miao, Y. E.; Lai, F. L.; Liu, T. X. 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J. Mater. Chem. A 2021, 9, 423–432.

172

Lai, F. L.; Yang, C.; Lian, R. Q.; Chu, K. B.; Qin, J. J.; Zong, W.; Rao, D. W.; Hofkens, J.; Lu, X. H.; Liu, T. X. Three-phase boundary in cross-coupled micro-mesoporous networks enabling 3D-printed and ionogel-based quasi-solid-state micro-supercapacitors. Adv. Mater. 2020, 32, 2002474.

173

Yu, L. H.; Li, W. P.; Wei, C. H.; Yang, Q. F.; Shao, Y. L.; Sun, J. Y. 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 2020, 12, 143.

174

Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A. N.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B., et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 2020, 32, 1906652.

175

Shen, K.; Ding, J. W.; Yang, S. B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 2018, 8, 1800408.

176

Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.

177

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

178

Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336.

179

Tang, X. W.; Zhu, C. L.; Cheng, D. D.; Zhou, H.; Liu, X. H.; Xie, P. W.; Zhao, Q. B.; Zhang, D.; Fan, T. X. Architectured leaf-inspired Ni0.33Co0.66S2/Graphene aerogels via 3D printing for high-performance energy storage. Adv. Funct. Mater. 2018, 28, 1805057.

180
Zong, W.; Guo, H. L.; Ouyang, Y.; Mo, L. L.; Zhou, C. Y.; Chao, G. Y.; Hofkens, J.; Xu, Y.; Wang, W.; Miao, Y. E. et al. Topochemistry-driven synthesis of transition-metal selenides with weakened van der Waals force to enable 3D-printed Na-ion hybrid capacitors. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202110016.
181

Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867–876.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 November 2021
Revised: 25 January 2022
Accepted: 27 January 2022
Published: 13 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52073177) and Key Project of Department of Education of Guangdong Province (No. 2020KTSCX118). The authors acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China.

Return