AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction

Haojing Wang1,§Xiaodong Wu2,§Guanyu Liu1,3Shuyang Wu1,3Rong Xu1,3( )
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
Cambridge Centre for Advanced Research and Education in Singapore (CARES), Singapore 138602, Singapore

§ Haojing Wang and Xiaodong Wu contributed equally to this work.

Show Author Information

Graphical Abstract

Nickel nanoclusters supported on nitrogen-doped carbon substrate can be feasibly derived from Ni/Zn bimetallic metal-organic framework precursors via pyrolysis process without acid-washing post-treatment step, achieving highly selective and durable electrocatalytic CO2 reduction to CO (FECO > 98% for 40 h) in mild aqueous condition.

Abstract

Utilizing electrocatalytic CO2 reduction (ECR) to decrease the carbon footprint has been regarded as a promising pathway. Herein, we report the synthesis of Ni nanoclusters (NCs) of below 2 nm highly dispersed on N-doped carbon using a Ni/Zn bimetallic metal-organic framework (MOF) precursor. The size and the content of the Ni catalyst can be effectively controlled by varying the Ni:Zn ratio in MOF precursors. The –NH2 group in MOF ligand critically influences the size of Ni catalyst, as well as the property of the carbon substrate. At the optimum ratio of 1:150, Ni NCs with an average size of 1.9 nm anchored on pyridinic N-rich carbon were obtained after MOF pyrolysis. The resultant catalyst exhibits a high Faradaic efficiency for CO (FECO, 98.7%) and considerable partial current density for CO (JCO, −40.4 mA·cm−2) at −0.88 V versus reversible hydrogen electrode (RHE). Benefiting from the synergistic effect of small Ni clusters and their optimal interaction with the carbon support, the catalyst displays exceptional long-term stability. Density functional theory (DFT) calculations carried out for the three model structures confirm that Ni NCs anchored on N-doped carbon facilitate the easier formation of *COOH intermediate and faster electron transfer rate compared with the large-sized Ni particles represented by Ni(111) and the N-doped carbon without Ni.

Electronic Supplementary Material

Download File(s)
12274_2022_4199_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Feldman, D. R.; Collins, W. D.; Gero, P. J.; Torn, M. S.; Mlawer, E. J.; Shippert, T. R. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 2015, 519, 339–343.

[3]

Song, R. B.; Zhu, W. L.; Fu, J. J.; Chen, Y.; Liu, L. X.; Zhang, J. R.; Lin, Y. H.; Zhu, J. J. Electrode materials engineering in electrocatalytic CO2 reduction: Energy input and conversion efficiency. Adv. Mater. 2019, 32, 1903796.

[4]

Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

[5]

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

[6]

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

[7]

Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[8]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.

[9]

Khezri, B.; Fisher, A. C.; Pumera, M. CO2 reduction: The quest for electrocatalytic materials. J. Mater. Chem. A 2017, 5, 8230–8246.

[10]

Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc 2012, 134, 19969–19972.

[11]

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

[12]

Zhang, Y.; Ji, L.; Qiu, W. B.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. Chem. Commun. 2018, 54, 2666–2669.

[13]

Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.

[14]

Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

[15]

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

[16]

Pan, B. B.; Zhu, X. R.; Wu, Y. L.; Liu, T. C.; Bi, X. X.; Feng, K.; Han, N.; Zhong, J.; Lu, J.; Li, Y. F. et al. Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon. Adv. Sci. 2020, 7, 2001002.

[17]

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

[18]

Liu, T. F.; Ali, S.; Lian, Z.; Si, C. W.; Su, D. S.; Li, B. Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: The decisive role of the bonding configuration of phosphorus. J. Mater. Chem. A 2018, 6, 19998–20004.

[19]

Xie, J. F.; Zhao, X. T.; Wu, M. X.; Li, Q. H.; Wang, Y. B.; Yao, J. N. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9640–9644.

[20]

Wang, G. X.; Liu, M. Y.; Jia, J. C.; Xu, H. M.; Zhao, B. S.; Lai, K. Y.; Tu, C. Y.; Wen, Z. H. Nitrogen and sulfur Co-doped carbon nanosheets for electrochemical reduction of CO2. ChemCatChem 2020, 12, 2203–2208.

[21]

Wu, J. J.; Liu, M. J.; Sharma, P. P.; Yadav, R. M.; Ma, L. L.; Yang, Y. C.; Zou, X. L.; Zhou, X. D.; Vajtai, R.; Yakobson, B. I. et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016, 16, 466–470.

[22]

Liu, S.; Yang, H. B.; Huang, X.; Liu, L. H.; Cai, W. Z.; Gao, J. J.; Li, X. N.; Zhang, T.; Huang, Y. Q.; Liu, B. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater. 2018, 28, 1800499.

[23]

Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Y. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 2020, 10, 1903068.

[24]

Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study. ACS Catal. 2017, 7, 1520–1525.

[25]

Varela, A. S.; Sahraie, N. R.; Steinberg, J.; Ju, W.; Oh, H. S.; Strasser, P. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem., Int. Ed. 2015, 54, 10758–10762.

[26]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realizenear-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[27]

Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.

[28]

Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M. et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 2018, 8, 6255–6264.

[29]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

[30]

Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B Environ. 2018, 226, 463–472.

[31]

Daiyan, R.; Lu, X. Y.; Tan, X.; Zhu, X. F.; Chen, R.; Smith, S. C.; Amal, R. Antipoisoning nickel-carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Appl. Energy Mater. 2019, 2, 8002–8009.

[32]

Möller, T.; Ju, W.; Bagger, A.; Wang, X. L.; Luo, F.; Thanh, T. N.; Varela, A. S.; Rossmeisl, J.; Strasser, P. Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities. Energy Environ. Sci. 2019, 12, 640–647.

[33]

Zhang, M. L.; Wu, T. S.; Hong, S.; Fan, Q.; Soo, Y. L.; Masa, J.; Qiu, J. S.; Sun, Z. Y. Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance. ACS Sustainable Chem. Eng. 2019, 7, 15030–15035.

[34]

Li, Z. D.; He, D.; Yan, X. X.; Dai, S.; Younan, S.; Ke, Z. J.; Pan, X. Q.; Xiao, X. H.; Wu, H. J.; Gu, J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 18572–18577.

[35]

Lu, Y.; Wang, H. J.; Yu, P. F.; Yuan, Y. F.; Shahbazian-Yassar, R.; Sheng, Y.; Wu, S. Y.; Tu, W. G.; Liu, G. Y.; Kraft, M. et al. Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction. Nano Energy 2020, 77, 105158.

[36]

Chen, X.; Ma, D. D.; Chen, B.; Zhang, K. X.; Zou, R. Q.; Wu, X. T.; Zhu, Q. L. Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B Environ. 2020, 267, 118720.

[37]

Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796.

[38]

Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

[39]

Mistry, H.; Reske, R.; Zeng, Z. H.; Zhao, Z. J.; Greeley, J.; Strasser, P.; Cuenya, B. R. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 2014, 136, 16473–16476.

[40]

Gautam, S.; Dharamvir, K.; Goel, N. CO2 adsorption and activation over medium sized Cun (n = 7, 13 and 19) clusters: A density functional study. Comput. Theor. Chem. 2013, 1009, 8–16.

[41]

Liu, S. G.; Huang, S. P. Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction. Appl. Surf. Sci. 2019, 475, 20–27.

[42]

Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

[43]

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

[44]

Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[45]

Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

[46]

Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2017, 29, 1605957.

[47]

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

[48]

Jia, M. W.; Choi, C.; Wu, T. S.; Ma, C.; Kang, P.; Tao, H. C.; Fan, Q.; Hong, S.; Liu, S. Z.; Soo, Y. L. et al. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem. Sci. 2018, 9, 8775–8780.

[49]

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

[50]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[51]

Li, X. F.; Zhu, Q. L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033.

[52]

Zhu, Q. L.; Xia, W.; Zheng, L. R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal–organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

[53]

Shah, S. S. A.; Najam, T.; Wen, M.; Zang, S. Q.; Waseem, A.; Jiang, H. L. Metal–organic framework-based electrocatalysts for CO2 reduction. Small Struct. 2021, 2100090.

[54]

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

[55]

Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

[56]

Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

[57]

Wang, H. J.; Liu, G. Y.; Chen, C. P.; Tu, W. G.; Lu, Y.; Wu, S. Y.; O’Hare, D.; Xu, R. Single-Ni sites embedded in multilayer nitrogen-doped graphene derived from amino-functionalized MOF for highly selective CO2 electroreduction. ACS Sustainable Chem. Eng. 2021, 9, 3792–3801.

[58]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J. Y.; Liu, J.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[59]

Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.

[60]

Wang, Z. Q.; Tanabe, K. K.; Cohen, S. M. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg. Chem. 2009, 48, 296–306.

[61]

Noh, J.; Kim, D.; Lee, J.; Yoon, M.; Park, M. H.; Lee, K. M.; Kim, Y.; Kim, M. Three component controls in pillared metal-organic frameworks for catalytic carbon dioxide fixation. Catalysts 2018, 8, 565.

[62]

Barman, S.; Remhof, A.; Koitz, R.; Iannuzzi, M.; Blacque, O.; Yan, Y. G.; Fox, T.; Hutter, J.; Züttel, A.; Berke, H. Post-synthesis amine borane functionalization of a metal-organic framework and its unusual chemical hydrogen release phenomenon. Chem.—Eur. J. 2010, 10, 751–758.

[63]

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

[64]

Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779.

[65]

Wang, R. M.; Sun, X. H.; Ould-Chikh, S.; Osadchii, D.; Bai, F.; Kapteijn, F.; Gascon, J. Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction. ACS. Appl. Mater. Interfaces 2018, 10, 14751–14758.

[66]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[67]

Chen, Z. P.; Zhang, X. X.; Jiao, M. Y.; Mou, K. W.; Zhang, X. P.; Liu, L. C. Engineering electronic structure of stannous sulfide by amino-functionalized carbon: Toward efficient electrocatalytic reduction of CO2 to formate. Adv. Energy Mater. 2020, 10, 1903664.

Nano Research
Pages 4546-4553
Cite this article:
Wang H, Wu X, Liu G, et al. Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Research, 2023, 16(4): 4546-4553. https://doi.org/10.1007/s12274-022-4199-4
Topics:
Part of a topical collection:

920

Views

21

Crossref

22

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 16 September 2021
Revised: 29 December 2021
Accepted: 26 January 2022
Published: 02 March 2022
© Tsinghua University Press 2022
Return