Journal Home > Volume 15 , Issue 7

The construction of electrode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) has gradually been an appealing and attractive technology in energy storage research field. In the present work, a facile strategy of synthesizing ultrathin amorphous/nanocrystal dual-phase P-doped Bi2MoO6 (denoted as P-BiMO) nanosheets via a one-step wet-chemical synthesis approach is explored. Quite distinct from conventional two-dimensional (2D) nanosheets, our newly developed ultrathin P-BiMO nanosheets exhibit a unique tunable amorphous/nanocrystalline dual-phase structure with several compelling advantages including fast ion exchange ability and superb volume change buffer capability. The experimental results reveal that our prepared P-BiMO-6 electrode delivers an excellent reversible capacity of 509.6 mA·g−1 after continuous 1,500 cycles at the current densities of 1,500 mA·g−1 and improved rate performance for LIBs. In the meanwhile, the P-BiMO-6 electrode also shows a reversible capacity of 300.6 mA·g−1 after 100 cycles at 50 mA·g−1 when being used as the SIBs electrodes. This present work uncovers an effective dual-phase nanosheet structure to improve the performance of batteries, providing an attractive paradigm to develop superior electrode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tunable ultrathin dual-phase P-doped Bi2MoO6 nanosheets for advanced lithium and sodium storage

Show Author's information Fucong Lyu1,2,5,6Zhe Jia3,5Shanshan Zeng7,8Fei-Xiang Ma1,5Lulu Pan1,5Lizi Cheng1,5Yan Bao1,5Ligang Sun4,5Weihui Ou2,5,7Peng Du7,8Yang Yang Li7,8( )Jian Lu1,2,5,6 ( )
Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, China
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
School of Science, Harbin Institute of Technology, Shenzhen 518055, China
Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China

Abstract

The construction of electrode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) has gradually been an appealing and attractive technology in energy storage research field. In the present work, a facile strategy of synthesizing ultrathin amorphous/nanocrystal dual-phase P-doped Bi2MoO6 (denoted as P-BiMO) nanosheets via a one-step wet-chemical synthesis approach is explored. Quite distinct from conventional two-dimensional (2D) nanosheets, our newly developed ultrathin P-BiMO nanosheets exhibit a unique tunable amorphous/nanocrystalline dual-phase structure with several compelling advantages including fast ion exchange ability and superb volume change buffer capability. The experimental results reveal that our prepared P-BiMO-6 electrode delivers an excellent reversible capacity of 509.6 mA·g−1 after continuous 1,500 cycles at the current densities of 1,500 mA·g−1 and improved rate performance for LIBs. In the meanwhile, the P-BiMO-6 electrode also shows a reversible capacity of 300.6 mA·g−1 after 100 cycles at 50 mA·g−1 when being used as the SIBs electrodes. This present work uncovers an effective dual-phase nanosheet structure to improve the performance of batteries, providing an attractive paradigm to develop superior electrode materials.

Keywords: sodium-ion batteries, lithium-ion batteries, ultrathin nanosheets, anode materials, amorphous/nanocrystalline dual-phase structure, P-doped Bi2MoO6

References(62)

1

Li, J. L.; Fleetwood, J.; Hawley, W. B.; Kays, W. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2022, 122, 903–956.

2

Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

3

Dou, Q. Y.; Wu, N. Z.; Yuan, H. C.; Shin, K. H.; Tang, Y. B.; Mitlin, D.; Park, H. S. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chem. Soc. Rev. 2021, 50, 6734–6789.

4

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

5

Wang, Y. F.; Yuan, H. M.; Zhu, Y. H.; Wang, Z. Q.; Hu, Z. W.; Xie, J. W.; Liao, C. Z.; Cheng, H.; Zhang, F. C.; Lu, Z. G. An all-in-one supercapacitor working at sub-zero temperatures. Sci. China Mater. 2020, 63, 660–666.

6

Fan, E. S.; Li, L.; Wang, Z. P.; Lin, J.; Huang, Y. X.; Yao, Y.; Chen, R. J.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063.

7

Cai, Y.; Wang, H. E.; Zhao, X.; Huang, F.; Wang, C.; Deng, Z.; Li, Y.; Cao, G. Z.; Su, B. L. Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Appl. Mater. Interfaces 2017, 9, 10652–10663.

8

Xia, T.; Zhang, W.; Li, W. J.; Oyler, N. A.; Liu, G.; Chen, X. B. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2, 826–835.

9

Lai, X.; Jin, C. Y.; Yi, W.; Han, X. B.; Feng, X. N.; Zheng, Y. J.; Ouyang, M. G. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Stor. Mater. 2021, 35, 470–499.

10

Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res. 2021, 1–34.

11

Xia, T.; Zhang, W.; Murowchick, J. B.; Liu, G.; Chen, X. B. A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater. 2013, 3, 1516–1523.

12

Yu, S. H.; Feng, X. R.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 2018, 51, 273–281.

13

Yue, L. C.; Ma, C. Q.; Yan, S. H.; Wu, Z. G.; Zhao, W. X.; Liu, Q.; Luo, Y. L.; Zhong, B. H.; Zhang, F.; Liu, Y. et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Res. 2022, 15, 186–194.

14

Zhang, Z. H.; Dong, S. M.; Cui, Z. L.; Du, A. B.; Li, G. C.; Cui, G. L. Rechargeable magnesium batteries using conversion-type cathodes: A perspective and minireview. Small Methods 2018, 2, 1800020.

15

Ren, Q. Y.; Qin, N.; Liu, B.; Yao, Y.; Zhao, X.; Deng, Z.; Li, Y.; Dong, Y. C.; Qian, D.; Su, B. L. et al. An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: Insights into the charge storage mechanism and enhanced reaction kinetics. J. Mater. Chem. A 2020, 8, 3450–3458.

16

Zhao, X. X.; Wang, J. Y.; Yu, R. B.; Wang, D. Construction of multishelled binary metal oxides via coabsorption of positive and negative ions as a superior cathode for sodium-ion batteries. J. Am. Chem. Soc. 2018, 140, 17114–17119.

17

Hu, J. X.; Xie, Y. Y.; Zheng, J. Q.; Lai, Y. Q.; Zhang, Z. A. Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 2020, 13, 2650–2657.

18

Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4, 972–996.

19

Sarkar, S.; Roy, S.; Zhao, Y. F.; Zhang, J. J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Res. 2021, 14, 3690–3723.

20

Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.

21

Lyu, F. C.; Zeng, S. S.; Sun, Z. F.; Qin, N.; Cao, L. J.; Wang, Z. Y.; Jia, Z.; Wu, S. F.; Ma, F. X.; Li, M. C. et al. Lamellarly stacking porous N, P co-doped Mo2C/C nanosheets as high performance anode for lithium-ion batteries. Small 2019, 15, 1805022.

22

Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

23

Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 2009, 19, 2526–2552.

24

Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 2015, 27, 6928–6933.

25

Hu, J.; Wang, Z. Y.; Fu, Y.; Lyu, L. L.; Lu, Z. G.; Zhou, L. M. In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Sci. China Mater. 2020, 63, 728–738.

26

Liu, J. P.; Li, Y. Y.; Huang, X. T.; Li, G. Y.; Li, Z. K. Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Adv. Funct. Mater. 2008, 18, 1448–1458.

27

Pumera, M.; Sofer, Z.; Ambrosi, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981–8987.

28

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

29

Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014, 8, 9606–9615.

30

Er, D. Q.; Li, J. W.; Naguib, M.; Gogotsi, Y.; Shenoy, V. B. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11173–11179.

31

Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.

32

Zhu, Y.; Peng, L. L.; Fang, Z. W.; Yan, C. S.; Zhang, X.; Yu, G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30, 1706347.

33

Feng, Y.; Li, Y. L.; Hou, F. Boron doped lithium trivanadate as a cathode material for an enhanced rechargeable lithium ion batteries. J. Power Sources 2009, 187, 224–228.

34

Li, J. B.; Yan, D.; Hou, S. J.; Li, Y. Q.; Lu, T.; Yao, Y. F.; Pan, L. K. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A 2018, 6, 1234–1243.

35

Hou, Y.; Chang, K.; Wang, Z. Y.; Gu, S.; Liu, Q.; Zhang, J. J.; Cheng, H.; Zhang, S. L.; Chang, Z. R.; Lu, Z. G. Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries. Sci. China Mater. 2019, 62, 474–486.

36

Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445.

37

Wu, G.; Chan, K. C.; Zhu, L. L.; Sun, L. G.; Lu, J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 2017, 545, 80–83.

38

Ni, J. F.; Sun, M. L.; Li, L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater. 2019, 31, 1902603.

39

Xia, T.; Zhang, W.; Murowchick, J.; Liu, G.; Chen, X. B. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 2013, 13, 5289–5296.

40

Xia, T.; Zhang, W.; Wang, Z. H.; Zhang, Y. L.; Song, X. Y.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. B. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109–118.

41

Lin, X.; Liu, D.; Guo, X. Y.; Sun, N.; Zhao, S.; Chang, L. M.; Zhai, H. J.; Wang, Q. W. Fabrication and efficient visible light-induced photocatalytic activity of Bi2MoO6/BiPO4 composite. J. Phys. Chem. Solids 2015, 76, 170–177.

42

Yang, M. Y.; Shang, C. Q.; Li, F. F.; Liu, C.; Wang, Z. Y.; Gu, S.; Liu, D.; Cao, L. J.; Zhang, J. J.; Lu, Z. G. et al. Synergistic electronic and morphological modulation on ternary Co1−xVxP nanoneedle arrays for hydrogen evolution reaction with large current density. Sci. China Mater. 2021, 64, 880–891.

43

Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518–1524.

44

Jia, Z.; Lyu, F.; Zhang, L. C.; Zeng, S.; Liang, S. X.; Li, Y. Y.; Lu, J. Pt nanoparticles decorated heterostructured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light. Sci. Rep. 2019, 9, 1–13.

45

Zhou, Y. G.; Zhang, Y. F.; Lin, M. S.; Long, J. L.; Zhang, Z. Z.; Lin, H. X.; Wu, J. C. S.; Wang, X. X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340.

46

Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

47

Zhang, S. L.; Zheng, Y.; Huang, X. J.; Hong, J.; Cao, B.; Hao, J. N.; Fan, Q. N.; Zhou, T. F.; Guo, Z. P. Structural engineering of hierarchical micro-nanostructured Ge–C framework by controlling the nucleation for ultralong-life Li storage. Adv. Energy Mater. 2019, 9, 1900081.

48

Jia, Z.; Wang, Q.; Sun, L. G.; Wang, Q.; Zhang, L. C.; Wu, G.; Luan, J. H.; Jiao, Z. B.; Wang, A. D.; Liang, S. X. et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Adv. Funct. Mater. 2019, 29, 1807857.

49

Zhang, P.; Wang, D.; Zhu, Q.; Sun, N.; Fu, F.; Xu, B. et al. Plate-to-layer Bi2MoO6/MXene-heterostructured anode for lithium-ion batteries. Adv. Mater. 2019, 11(1), 1–14.

50

Li, Y. L.; Trujillo, M. A.; Fu, E. G.; Patterson, B.; Fei, L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Bismuth oxide: A new lithium-ion battery anode. J. Mater. Chem. A 2013, 1, 12123–12127.

51

Yuan, S.; Zhao, Y.; Chen, W. B.; Wu, C.; Wang, X. Y.; Zhang, L. N.; Wang, Q. Self-assembled 3D hierarchical porous Bi2MoO6 microspheres towards high capacity and ultralong-life anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 26,21781–21790.

52

Wang, Z. H.; Zhang, Y. L.; Xia, T.; Murowchick, J.; Liu, G.; Chen, X. B. Lithium-ion battery performance of (001)-faceted TiO2 nanosheets vs. spherical TiO2 nanoparticles. Energy Technol. 2014, 2, 376–382.

53

Guan, L.; Chen, X. B. Photoexcited charge transport and accumulation in anatase TiO2. ACS Appl. Energy Mater. 2018, 1, 4313–4320.

54

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518.

55

Li, Z. H.; Gan, Q. M.; Zhang, Y. F.; Hu, J.; Liu, P.; Xu, C. H.; Wu, X. B.; Ge, Y. L.; Wang, F.; Yao, Q. R. et al. FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage. Nano Res. 2022, 15, 217–224.

56

Wang, H. E.; Zhao, X.; Yin, K. L.; Li, Y.; Chen, L. H.; Yang, X. Y.; Zhang, W. J.; Su, B. L.; Cao, G. Z. Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl. Mater. Interfaces 2017, 9, 43665–43673.

57

Sottmann, J.; Herrmann, M.; Vajeeston, P.; Ruud, A.; Drathen, C.; Emerich, H.; Wragg, D. S.; Fjellvåg, H. Bismuth vanadate and molybdate: Stable alloying anodes for sodium-ion batteries. Chem. Mater. 2017, 29, 2803–2810.

58

Zhao, Y. B.; Manthiram, A. High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 2015, 27, 3096–3101.

59

Zhao, X.; Zhao, Y. D.; Liu, Z. H.; Yang, Y.; Sui, J. H.; Wang, H. E.; Cai, W.; Cao, G. Z. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem. Eng. J. 2018, 354, 1164–1173.

60

Huang, B.; Liu, S.; Zhao, X.; Li, Y. W.; Yang, J. W.; Chen, Q. Q.; Xiao, S. H.; Zhang, W. H.; Wang, H. E.; Cao, G. Z. Enhancing sodium-ion storage performance of MoO2/N-doped carbon through interfacial Mo–N–C bond. Sci. China Mater. 2021, 64, 85–95.

61

He, M.; Wang, Z. H.; Yan, X. D.; Tian, L. H.; Liu, G.; Chen, X. B. Hydrogenation effects on the lithium ion battery performance of TiOF2. J. Power Sources 2016, 306, 309–316.

62

Shi, Y. L.; Sun, S. B.; Liu, J. J.; Cui, Y. L.; Zhuang, Q. C.; Chen, X. B. Enhanced charge storage of Li3FeF6 with carbon nanotubes for lithium-ion batteries. RSC Adv. 2016, 6, 113283–113288.

File
12274_2022_4198_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 December 2021
Revised: 17 January 2022
Accepted: 20 January 2022
Published: 29 March 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project: HZQB-KCZYB-2020030, the National Key R&D Program of China (Project No. 2017YFA0204403), Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.

Return