Journal Home > Volume 15 , Issue 11

The strong aggregation tendency of hole transport material poly[3-(4-carboxylbutyl) thiophene-K (P3CT-K) restricts its further application in inverted perovskite solar cells (PSCs). Here, we report an effective strategy to address this issue and achieve the superior performance of inverted methylammonium lead triiodide (MAPbI3) PSCs, in which graphdiyne oxide (GDYO) doped P3CT-K nanocomposites are applied as the hole transport nanolayer (HTL). It is revealed that the strong π–π stacking interaction occurs between GDYO and P3CT-K, which is proved by the blue shift of the absorption peak of P3CT-K nanolayer. The aggregation control via GDYO contributes to the property improvement of P3CT-K HTL. Moreover, the homogeneous coverage induces the growth of perovskite grain with larger size than that based on the undoped one. As a result, the optimized surface morphology, enhanced conductivity, charge extraction as well as better crystal quality, finally improve the device performance. An optimal power conversion efficiency of 19.06% is achieved, with simultaneously improved fill factor and short circuit current density. This work presents the potential of functional graphdiyne (GDY) in the development of highly efficient photovoltaic device.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphdiyne oxide doping for aggregation control of hole-transport nanolayer in inverted perovskite solar cells

Show Author's information Xu Cai1,2Jin Tang1Min Zhao1Le Liu1Zhibin Yu1Jiajia Du1,2Ling Bai1Fushen Lu2Tonggang Jiu1( )Yuliang Li1,3( )
Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science & School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The strong aggregation tendency of hole transport material poly[3-(4-carboxylbutyl) thiophene-K (P3CT-K) restricts its further application in inverted perovskite solar cells (PSCs). Here, we report an effective strategy to address this issue and achieve the superior performance of inverted methylammonium lead triiodide (MAPbI3) PSCs, in which graphdiyne oxide (GDYO) doped P3CT-K nanocomposites are applied as the hole transport nanolayer (HTL). It is revealed that the strong π–π stacking interaction occurs between GDYO and P3CT-K, which is proved by the blue shift of the absorption peak of P3CT-K nanolayer. The aggregation control via GDYO contributes to the property improvement of P3CT-K HTL. Moreover, the homogeneous coverage induces the growth of perovskite grain with larger size than that based on the undoped one. As a result, the optimized surface morphology, enhanced conductivity, charge extraction as well as better crystal quality, finally improve the device performance. An optimal power conversion efficiency of 19.06% is achieved, with simultaneously improved fill factor and short circuit current density. This work presents the potential of functional graphdiyne (GDY) in the development of highly efficient photovoltaic device.

Keywords: perovskite solar cells, hole transport layer, graphdiyne oxide, aggregation control, carriers transfer

References(42)

[1]

Wang, N.; He, J. J.; Tu, Z. Y.; Yang, Z.; Zhao, F. H.; Li, X. D.; Huang, C. S.; Wang, K.; Jiu, T. G.; Yi, Y. P. et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage. Angew. Chem. , Int. Ed. 2017, 56, 10740–10745.

[2]

Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Yi, Y. P.; Li, Y. L. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem. , Int. Ed. 2018, 57, 3968–3973.

[3]

Li, Y. J.; Li, Y. L. Two dimensional polymers-progress of full carbon graphyne. Acta Polym. Sin. 2015, 147–165.

[4]

Jin, Z. W.; Zhou, Q.; Chen, Y. H.; Mao, P.; Li, H.; Liu, H. B.; Wang, J. Z.; Li, Y. L. Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater. 2016, 28, 3697–3702.

[5]

Du, H. P.; Yang, H.; Huang, C. S.; He, J. J.; Liu, H. B.; Li, Y. L. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy 2016, 22, 615–622.

[6]

Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

[7]

Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.

[8]

Shang, H.; Zuo, Z. C.; Li, L.; Wang, F.; Liu, H. B.; Li, Y. J.; Li, Y. L. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew. Chem. , Int. Ed. 2018, 57, 774–778.

[9]

Wang, F.; Zuo, Z. C.; Li, L.; Li, K.; He, F.; Jiang, Z. Q.; Li, Y. L. Large-area aminated-graphdiyne thin films for direct methanol fuel cells. Angew. Chem. , Int. Ed. 2019, 58, 15010–15015.

[10]

Xing, C. Y.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Hui, L.; Fang, Y.; Liu, Y. X.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Fluorographdiyne: A metal-free catalyst for applications in water reduction and oxidation. Angew. Chem. , Int. Ed. 2019, 58, 13897–13903.

[11]

Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q. et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem. , Int. Ed. 2020, 59, 13021–13027.

[12]

Fang, Y.; Xue, Y. R.; Hui, L.; Yu, H. D.; Li, Y. L. Graphdiyne@janus magnetite for photocatalytic nitrogen fixation. Angew. Chem. , Int. Ed. 2021, 60, 3170–3174.

[13]

Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943.

[14]

Jin, Z. W.; Yuan, M. J.; Li, H.; Yang, H.; Zhou, Q.; Liu, H.; Lan, X.; Liu, M.; Wang, J.; Sargent, E. H. et al. Graphdiyne: An efficient hole transporter for stable high-performance colloidal quantum dot solar cells. Adv. Funct. Mater. 2016, 26, 5284–5289.

[15]

Du, Y. C.; Zhou, W. D.; Gao, J.; Pan, X. Y.; Li, Y. L. Fundament and application of graphdiyne in electrochemical energy. Acc. Chem. Res. 2020, 53, 459–469.

[16]

Zuo, Z. C.; Li, Y. L. Emerging electrochemical energy applications of graphdiyne. Joule 2019, 3, 899–903.

[17]

Liu, L.; Kan, Y. Y.; Gao, K.; Wang, J. X.; Zhao, M.; Chen, H.; Zhao, C. J.; Jiu, T. G.; Jen, A. K. Y.; Li, Y. L. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17. 3% efficiency and high reproductivity. Adv. Mater. 2020, 32, 1907604.

[18]

Li, J. S.; Jiu, T. G.; Duan, C. H.; Wang, Y.; Zhang, H. N.; Jian, H. M.; Zhao, Y. J.; Wang, N.; Huang, C. S.; Li, Y. L. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy 2018, 46, 331–337.

[19]

Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732.

[20]

Wu, S. F.; Zhang, J.; Li, Z.; Liu, D. J.; Qin, M. C.; Cheung, S. H.; Lu, X. H.; Lei, D. Y.; So, S. K.; Zhu, Z. L. et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 2020, 4, 1248–1262.

[21]

Choi, H.; Choi, K.; Choi, Y.; Kim, T.; Lim, S.; Park, T. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives. Small Methods 2020, 4, 1900569.

[22]

Xue, B. D.; Bi, S. Q.; You, S.; Zhou, J. Y.; Wu, G. B.; Meng, R.; Wang, B. X.; Wang, J. Q.; Leng, X. Y.; Zhang, Y. et al. Retardation of trap-assisted recombination in lead halide perovskite solar cells by a dimethylbiguanide anchor layer. Chem.—Eur. J. 2019, 25, 1076–1082.

[23]

Yang, J.; Liu, C.; Cai, C. S.; Hu, X. T.; Huang, Z. Q.; Duan, X. P.; Meng, X. C.; Yuan, Z. Y.; Tan, L. C.; Chen, Y. W. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 2019, 9, 1900198.

[24]

Liao, K. J.; Li, C. B.; Xie, L. S.; Yuan, Y.; Wang, S. R.; Cao, Z. Y.; Ding, L. M.; Hao, F. Hot-casting large-grain perovskite film for efficient solar cells: Film formation and device performance. Nano-Micro Lett. 2020, 12, 156.

[25]

Zhou, X. S.; Qiu, L. L.; Fan, R. Q.; Zhang, J.; Hao, S.; Yang, Y. L. Heterojunction incorporating perovskite and microporous metal-organic framework nanocrystals for efficient and stable solar cells. Nano-Micro Lett. 2020, 12, 80.

[26]

Choi, H.; Mai, C. K.; Kim, H. B.; Jeong, J.; Song, S.; Bazan, G. C.; Kim, J. Y.; Heeger, A. J. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 2015, 6, 7348.

[27]

Huang, P.; Liu, Y. F.; Zhang, K. C.; Yuan, L. G.; Li, D. H.; Hou, G. L.; Dong, B.; Zhou, Y.; Song, B.; Li, Y. F. Catechol derivatives as dopants in PEDOT: PSS to improve the performance of p–i–n perovskite solar cells. J. Mater. Chem. A 2017, 5, 24275–24281.

[28]

Li, J.; Dewi, H. A.; Wang, H.; Lew, J. H.; Mathews, N.; Mhaisalkar, S.; Bruno, A. Design of perovskite thermally co-evaporated highly efficient mini-modules with high geometrical fill factors. Solar RRL 2020, 4, 2000473.

[29]

Zhang, L. Z.; Zhou, X. Y.; Zhong, X. W.; Cheng, C.; Tian, Y. Q.; Xu, B. M. Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy 2019, 57, 248–255.

[30]

Kim, S.; Jeong, J. E.; Hong, J.; Lee, K.; Lee, M. J.; Woo, H. Y.; Hwang, I. Improved interfacial crystallization by synergic effects of precursor solution stoichiometry and conjugated polyelectrolyte interlayer for high open-circuit voltage of perovskite photovoltaic diodes. ACS Appl. Mater. Interfaces 2020, 12, 12328–12336.

[31]

Zhang, W. X.; Wan, L.; Li, X. D.; Wu, Y. L.; Fu, S.; Fang, J. F. A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. J. Mater. Chem. A 2019, 7, 18898–18905.

[32]

Li, S. F.; He, B. Z.; Xu, J.; Lu, H. Q.; Jiang, J.; Zhu, J. H.; Kan, Z. P.; Zhu, L. N.; Wu, F. Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V. Nanoscale 2020, 12, 3686–3691.

[33]

Li, X. D.; Wang, Y. C.; Zhu, L. P.; Zhang, W. J.; Wang, H. Q.; Fang, J. F. Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer. ACS Appl. Mater. Interfaces 2017, 9, 31357–31361.

[34]

Li, X. D.; Liu, X. H.; Wang, X. Y.; Zhao, L. X.; Jiu, T. G.; Fang, J. F. Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. J. Mater. Chem. A 2015, 3, 15024–15029.

[35]

Zhang, W. X.; Wan, L.; Fu, S.; Li, X. D.; Fang, J. F. Reducing energy loss and stabilising the perovskite/poly(3-hexylthiophene) interface through a polyelectrolyte interlayer. J. Mater. Chem. A 2020, 8, 6546–6554.

[36]

Zhang, G. D.; Zhang, Y. X.; Chen, S. Q.; Chen, H.; Liu, L.; Ding, W. M.; Wang, J. H.; Zhang, A. Y.; Pang, S. P.; Guo, X. et al. Improved interfacial property by small molecule ethanediamine for high performance inverted planar perovskite solar cells. J. Energy Chem. 2021, 54, 467–474.

[37]

You, G. S.; Liu, L.; Wang, J.; Zhao, M.; Zhao, C. J.; Cai, X.; Tang, J.; Lu, F. S.; Jiu, T. G. Tris(pentafluorophenyl)borane-modified P3CT-K as an efficient hole-transport layer for inverted planar MAPbI3 perovskite solar cells. Adv. Sustainable Syst. 2021, 5, 2100107.

[38]

Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

[39]

Cai, F. L.; Cai, J. L.; Yang, L. Y.; Li, W.; Gurney, R. S.; Yi, H. N.; Iraqi, A.; Liu, D.; Wang, T. Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 2018, 45, 28–36.

[40]

Xie, Y. P.; Yang, F.; Li, Y. X.; Uddin, M. A.; Bi, P. Q.; Fan, B. B.; Cai, Y. H.; Hao, X. T.; Woo, H. Y.; Li, W. W. et al. Morphology control enables efficient ternary organic solar cells. Adv. Mater. 2018, 30, 1803045.

[41]

Ann, M. H.; Kim, J.; Kim, M.; Alosaimi, G.; Kim, D.; Ha, N. Y.; Seidel, J.; Park, N.; Yun, J. S.; Kim, J. H. Device design rules and operation principles of high-power perovskite solar cells for indoor applications. Nano Energy 2020, 68, 104321.

[42]

Chen, K.; Hu, Q.; Liu, T. H.; Zhao, L. C.; Luo, D. Y.; Wu, J.; Zhang, Y. F.; Zhang, W.; Liu, F.; Russell, T. P. et al. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 2016, 28, 10718–10724.

File
12274_2022_4187_MOESM1_ESM.pdf (852.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 December 2021
Revised: 22 January 2022
Accepted: 24 January 2022
Published: 02 March 2022
Issue date: November 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21975273), Scientific Research Starting Foundation of Outstanding Young Scholar of Shandong University, and the Fundamental Research Funds of Shandong University. We thank Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515012156), 2020 Li Ka Shing Foundation Cross Disciplinary Research Grant (No. 2020LKSFG01A), and Department of Education of Guangdong Province (Nos. 2021LSYS009 and 2021KCXTD032).

Return