Journal Home > Volume 15 , Issue 7

Conductive metal-organic frameworks (c-MOFs) are promising active electrode materials for electrochemical double-layer capacitors with a performance that already exceeds most carbon-based materials. However, their excellent supercapacitance is primarily based on organic or alkaline electrolytes, which largely impede their broad applications and sustainabilities. In this work, we propose a new synthesis approach for fabricating carbon nanotubes and c-MOFs (CNT@MOFs) core–shell structures, which result in high supercapacitance in neutral aqueous electrolytes. We identify that CNTs provide abundant active sites to ensure high capacitance, and Ni3(2,3,6,7,10,11-hexaiminotriphenylene (HITP))2 nanoarrays that in situ grow on the surface of CNTs bundles can significantly improve the conductivity and provide enough ion transport pathways in aqueous electrolytes. Specifically, using CNT@MOFs core–shell structures as an electrode, we obtained a high initial capacitance of 150.7 F·g−1 at 0.1 A·g−1 in 1 M Na2SO4 solution and good capacity retention of 83.5% after 10,000 cycles at 4 A·g−1. We also found that the carboxyl groups on the surface of CNTs provide better anchor sites for the in situ growth of c-MOF, which promotes the uniform growth of c-MOF shells on the CNT surface and improves aqueous electrolyte accessibility. We believe that the high supercapacitance in aqueous electrolytes reported in this work would provide a good prospect for deploying c-MOF based energy storage devices into biomedical and other healthcare electronic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ growth CNT@MOFs core–shell structures enabling high specific supercapacitances in neutral aqueous electrolyte

Show Author's information Mingxia Lu1Gang Wang1( )Xiping Yang1Bo Hou2( )
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK

Abstract

Conductive metal-organic frameworks (c-MOFs) are promising active electrode materials for electrochemical double-layer capacitors with a performance that already exceeds most carbon-based materials. However, their excellent supercapacitance is primarily based on organic or alkaline electrolytes, which largely impede their broad applications and sustainabilities. In this work, we propose a new synthesis approach for fabricating carbon nanotubes and c-MOFs (CNT@MOFs) core–shell structures, which result in high supercapacitance in neutral aqueous electrolytes. We identify that CNTs provide abundant active sites to ensure high capacitance, and Ni3(2,3,6,7,10,11-hexaiminotriphenylene (HITP))2 nanoarrays that in situ grow on the surface of CNTs bundles can significantly improve the conductivity and provide enough ion transport pathways in aqueous electrolytes. Specifically, using CNT@MOFs core–shell structures as an electrode, we obtained a high initial capacitance of 150.7 F·g−1 at 0.1 A·g−1 in 1 M Na2SO4 solution and good capacity retention of 83.5% after 10,000 cycles at 4 A·g−1. We also found that the carboxyl groups on the surface of CNTs provide better anchor sites for the in situ growth of c-MOF, which promotes the uniform growth of c-MOF shells on the CNT surface and improves aqueous electrolyte accessibility. We believe that the high supercapacitance in aqueous electrolytes reported in this work would provide a good prospect for deploying c-MOF based energy storage devices into biomedical and other healthcare electronic applications.

Keywords: carbon nanotubes, supercapacitor, metal-organic frameworks (MOFs), conductive MOFs, neutral aqueous electrolyte

References(46)

1

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

2

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

3

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

4

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

5

Park, J.; Lee, M.; Feng, D. W.; Huang, Z. H.; Hinckley, A. C.; Yakovenko, A.; Zou, X. D.; Cui, Y.; Bao, Z. N. Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 2018, 140, 10315–10323.

6

Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 2019, 12, 727–738.

7

Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. G. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, 2101131.

8

Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.

9

Downes, C. A.; Clough, A. J.; Chen, K. Y.; Yoo, J. W.; Marinescu, S. C. Evaluation of the H2 evolving activity of benzenehexathiolate coordination frameworks and the effect of film thickness on H2 production. ACS Appl. Mater. Interfaces 2018, 10, 1719–1727.

10

Yao, M. S.; Lv, X. J.; Fu, Z. H.; Li, W. H.; Deng, W. H.; Wu, G. D.; Xu, G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem., Int. Ed. 2017, 56, 16510–16514.

11

Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.

12

Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F. et al. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release. J. Am. Chem. Soc. 2017, 139, 7522–7532.

13

Hanikel, N.; Prévot, M. S.; Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348–355.

14

Kim, H.; Rao, S. R.; Kapustin, E. A.; Zhao, L.; Yang, S.; Yaghi, O. M.; Wang, E. N. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 2018, 9, 1191.

15

Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J. J.; Yaghi, O. M. Practical water production from desert air. Sci. Adv. 2018, 4, eaat3198.

16

Guo, M.; Wang, J. C.; Dou, H. L.; Gao, G. H.; Wang, S. P.; Wang, J. H.; Xiao, Z. W.; Wu, G. M.; Yang, X. W.; Ma, Z. F. Agglomeration-resistant 2D nanoflakes configured with super electronic networks for extraordinary fast and stable sodium-ion storage. Nano Energy 2019, 56, 502–511.

17

Mulzer, C. R.; Shen, L. X.; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2016, 2, 667–673.

18

Ramachandran, R.; Xuan, W. L.; Zhao, C. H.; Leng, X. H.; Sun, D. Z.; Luo, D.; Wang, F. Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application. RSC Adv. 2018, 8, 3462–3469.

19

Givaja, G.; Amo-Ochoa, P.; Gómez-García, C. J.; Zamora, F. Electrical conductive coordination polymers. Chem. Soc. Rev. 2012, 41, 115–147.

20

Hosseinian, A.; Amjad, A.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E.; Babazadeh, M.; Vessally, E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. J. Mater. Sci.: Mater. Electron. 2017, 28, 18040–18048.

21

Wen, P.; Gong, P. W.; Sun, J. F.; Wang, J. Q.; Yang, S. R. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 2015, 3, 13874–13883.

22

Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg. Chem. 2009, 48, 9048–9050.

23

Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X. F.; O’Keeffe, M.; Yaghi, O. M. Porous, Conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem. —Eur. J. 2012, 18, 10595–10601.

24

Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2013, 343, 66–69.

25

Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137, 6164–6167.

26

Zheng, Y.; Zheng, S. S.; Xu, Y. X.; Xue, H. G.; Liu, C. S.; Pang, H. Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chem. Eng. J. 2019, 373, 1319–1328.

27

Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 1774–1777.

28

Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed. 2015, 54, 4349–4352.

29

Skorupskii, G.; Dincă, M. Electrical conductivity in a porous, cubic rare-earth catecholate. J. Am. Chem. Soc. 2020, 142, 6920–6924.

30

Chen, T. Y.; Dou, J. H.; Yang, L. M.; Sun, C. Y.; Libretto, N. J.; Skorupskii, G.; Miller, J. T.; Dincă, M. Continuous electrical conductivity variation in M3(Hexaiminotriphenylene)2 (M = Co, Ni, Cu) MOF alloys. J. Am. Chem. Soc. 2020, 142, 12367–12373.

31

Cai, D.; Lu, M. J.; Li, L.; Cao, J. M.; Chen, D.; Tu, H. R.; Li, J. Z.; Han, W. A highly conductive MOF of graphene analogue Ni3(HITP)2 as a sulfur host for high-performance lithium-sulfur batteries. Small 2019, 15, 1902605.

32

Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30–36.

33

Dou, J. H.; Arguilla, M. Q.; Luo, Y.; Li, J.; Zhang, W. Z.; Sun, L.; Mancuso, J. L.; Yang, L. M.; Chen, T. Y.; Parent, L. R. et al. Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. Nat. Mater. 2021, 20, 222–228.

34

Gutzler, R.; Perepichka, D. F. π−electron conjugation in two dimensions. J. Am. Chem. Soc. 2013, 135, 16585–16594.

35

Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 2014, 136, 8859–8862.

36

Foster, M. E.; Sohlberg, K.; Allendorf, M. D.; Alec Talin, A. Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J. Phys. Chem. Lett. 2018, 9, 481–486.

37

Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically conductive metal-organic frameworks. Chem. Rev. 2020, 120, 8536–8580.

38

Lu, M. X.; Liu, S. S.; Chen, J.; Zhang, X.; Zhang, J. C.; Li, Z.; Hou, B. Rational-designed hybrid aerogels for ultra-flyweight electrochemical energy storage. J. Phys. Chem. C 2020, 124, 15688–15697.

39

Ding, H. B.; Zhou, J.; Rao, A. M.; Lu, B. G. Cell-like-carbon-micro-spheres for robust potassium anode. Natl. Sci. Rev. 2021, 8, nwaa276.

40

Venkataraman, A.; Amadi, E. V.; Chen, Y. D.; Papadopoulos, C. Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 2019, 14, 220.

41

Ansari, S. N.; Saraf, M.; Gupta, A. K.; Mobin, S. M. Functionalized Cu-MOF@CNT hybrid: Synthesis, crystal structure and applicability in supercapacitors. Chem. —Asian J. 2019, 14, 3566–3571.

42

Shen, C. H.; Chuang, C. H.; Gu, Y. J.; Ho, W. H.; Song, Y. D.; Chen, Y. C.; Wang, Y. C.; Kung, C. W. Cerium-based metal-organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Appl. Mater. Interfaces 2021, 13, 16418–16426.

43

Sreekanth, T. V. M.; Dillip, G. R.; Nagajyothi, P. C.; Yoo, K.; Kim, J. Integration of marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions. Appl. Catal. B: Environ. 2021, 285, 119793.

44

Lu, M. X.; Wang, G.; Li, B.; Chen, J.; Zhang, J. C.; Li, Z.; Hou, B. Molecular interaction balanced one- and two-dimensional hybrid nanoarchitectures for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2019, 21, 22283–22292.

45

Chen, S.; Dai, J.; Zeng, X. C. Metal-organic kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): From semiconducting to metallic by metal substitution. Phys. Chem. Chem. Phys. 2015, 17, 5954–5958.

46

Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.

File
12274_2022_4184_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 November 2021
Revised: 13 January 2022
Accepted: 24 January 2022
Published: 07 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Science and Technology Foundation of Henan Province (No. 192102210044), the National Natural Science Foundation of China (No. U1904171), the Young Backbone Teachers Training Program Foundation of Henan University of Technology, and the Innovative Funds Plan of Henan University of Technology (No. 2020ZKCJ04).

Return