AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ growth CNT@MOFs core–shell structures enabling high specific supercapacitances in neutral aqueous electrolyte

Mingxia Lu1Gang Wang1( )Xiping Yang1Bo Hou2( )
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
Show Author Information

Graphical Abstract

A new synthesis approach for fabricating carbon nanotubes and conductive metal-organic frameworks (c-MOFs) (CNT@MOFs) core–shell structures has been proposed, which enables c-MOF based supercapacitors in neutral aqueous electrolytes with a record energy storage performance beyond previously reported works.

Abstract

Conductive metal-organic frameworks (c-MOFs) are promising active electrode materials for electrochemical double-layer capacitors with a performance that already exceeds most carbon-based materials. However, their excellent supercapacitance is primarily based on organic or alkaline electrolytes, which largely impede their broad applications and sustainabilities. In this work, we propose a new synthesis approach for fabricating carbon nanotubes and c-MOFs (CNT@MOFs) core–shell structures, which result in high supercapacitance in neutral aqueous electrolytes. We identify that CNTs provide abundant active sites to ensure high capacitance, and Ni3(2,3,6,7,10,11-hexaiminotriphenylene (HITP))2 nanoarrays that in situ grow on the surface of CNTs bundles can significantly improve the conductivity and provide enough ion transport pathways in aqueous electrolytes. Specifically, using CNT@MOFs core–shell structures as an electrode, we obtained a high initial capacitance of 150.7 F·g−1 at 0.1 A·g−1 in 1 M Na2SO4 solution and good capacity retention of 83.5% after 10,000 cycles at 4 A·g−1. We also found that the carboxyl groups on the surface of CNTs provide better anchor sites for the in situ growth of c-MOF, which promotes the uniform growth of c-MOF shells on the CNT surface and improves aqueous electrolyte accessibility. We believe that the high supercapacitance in aqueous electrolytes reported in this work would provide a good prospect for deploying c-MOF based energy storage devices into biomedical and other healthcare electronic applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4184_MOESM1_ESM.pdf (1 MB)

References

1

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

2

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

3

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

4

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

5

Park, J.; Lee, M.; Feng, D. W.; Huang, Z. H.; Hinckley, A. C.; Yakovenko, A.; Zou, X. D.; Cui, Y.; Bao, Z. N. Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 2018, 140, 10315–10323.

6

Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 2019, 12, 727–738.

7

Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. G. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, 2101131.

8

Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.

9

Downes, C. A.; Clough, A. J.; Chen, K. Y.; Yoo, J. W.; Marinescu, S. C. Evaluation of the H2 evolving activity of benzenehexathiolate coordination frameworks and the effect of film thickness on H2 production. ACS Appl. Mater. Interfaces 2018, 10, 1719–1727.

10

Yao, M. S.; Lv, X. J.; Fu, Z. H.; Li, W. H.; Deng, W. H.; Wu, G. D.; Xu, G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem., Int. Ed. 2017, 56, 16510–16514.

11

Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.

12

Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F. et al. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release. J. Am. Chem. Soc. 2017, 139, 7522–7532.

13

Hanikel, N.; Prévot, M. S.; Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348–355.

14

Kim, H.; Rao, S. R.; Kapustin, E. A.; Zhao, L.; Yang, S.; Yaghi, O. M.; Wang, E. N. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 2018, 9, 1191.

15

Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J. J.; Yaghi, O. M. Practical water production from desert air. Sci. Adv. 2018, 4, eaat3198.

16

Guo, M.; Wang, J. C.; Dou, H. L.; Gao, G. H.; Wang, S. P.; Wang, J. H.; Xiao, Z. W.; Wu, G. M.; Yang, X. W.; Ma, Z. F. Agglomeration-resistant 2D nanoflakes configured with super electronic networks for extraordinary fast and stable sodium-ion storage. Nano Energy 2019, 56, 502–511.

17

Mulzer, C. R.; Shen, L. X.; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2016, 2, 667–673.

18

Ramachandran, R.; Xuan, W. L.; Zhao, C. H.; Leng, X. H.; Sun, D. Z.; Luo, D.; Wang, F. Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application. RSC Adv. 2018, 8, 3462–3469.

19

Givaja, G.; Amo-Ochoa, P.; Gómez-García, C. J.; Zamora, F. Electrical conductive coordination polymers. Chem. Soc. Rev. 2012, 41, 115–147.

20

Hosseinian, A.; Amjad, A.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E.; Babazadeh, M.; Vessally, E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. J. Mater. Sci.: Mater. Electron. 2017, 28, 18040–18048.

21

Wen, P.; Gong, P. W.; Sun, J. F.; Wang, J. Q.; Yang, S. R. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 2015, 3, 13874–13883.

22

Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg. Chem. 2009, 48, 9048–9050.

23

Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X. F.; O’Keeffe, M.; Yaghi, O. M. Porous, Conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem. —Eur. J. 2012, 18, 10595–10601.

24

Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2013, 343, 66–69.

25

Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137, 6164–6167.

26

Zheng, Y.; Zheng, S. S.; Xu, Y. X.; Xue, H. G.; Liu, C. S.; Pang, H. Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chem. Eng. J. 2019, 373, 1319–1328.

27

Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 1774–1777.

28

Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed. 2015, 54, 4349–4352.

29

Skorupskii, G.; Dincă, M. Electrical conductivity in a porous, cubic rare-earth catecholate. J. Am. Chem. Soc. 2020, 142, 6920–6924.

30

Chen, T. Y.; Dou, J. H.; Yang, L. M.; Sun, C. Y.; Libretto, N. J.; Skorupskii, G.; Miller, J. T.; Dincă, M. Continuous electrical conductivity variation in M3(Hexaiminotriphenylene)2 (M = Co, Ni, Cu) MOF alloys. J. Am. Chem. Soc. 2020, 142, 12367–12373.

31

Cai, D.; Lu, M. J.; Li, L.; Cao, J. M.; Chen, D.; Tu, H. R.; Li, J. Z.; Han, W. A highly conductive MOF of graphene analogue Ni3(HITP)2 as a sulfur host for high-performance lithium-sulfur batteries. Small 2019, 15, 1902605.

32

Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30–36.

33

Dou, J. H.; Arguilla, M. Q.; Luo, Y.; Li, J.; Zhang, W. Z.; Sun, L.; Mancuso, J. L.; Yang, L. M.; Chen, T. Y.; Parent, L. R. et al. Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. Nat. Mater. 2021, 20, 222–228.

34

Gutzler, R.; Perepichka, D. F. π−electron conjugation in two dimensions. J. Am. Chem. Soc. 2013, 135, 16585–16594.

35

Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 2014, 136, 8859–8862.

36

Foster, M. E.; Sohlberg, K.; Allendorf, M. D.; Alec Talin, A. Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J. Phys. Chem. Lett. 2018, 9, 481–486.

37

Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically conductive metal-organic frameworks. Chem. Rev. 2020, 120, 8536–8580.

38

Lu, M. X.; Liu, S. S.; Chen, J.; Zhang, X.; Zhang, J. C.; Li, Z.; Hou, B. Rational-designed hybrid aerogels for ultra-flyweight electrochemical energy storage. J. Phys. Chem. C 2020, 124, 15688–15697.

39

Ding, H. B.; Zhou, J.; Rao, A. M.; Lu, B. G. Cell-like-carbon-micro-spheres for robust potassium anode. Natl. Sci. Rev. 2021, 8, nwaa276.

40

Venkataraman, A.; Amadi, E. V.; Chen, Y. D.; Papadopoulos, C. Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 2019, 14, 220.

41

Ansari, S. N.; Saraf, M.; Gupta, A. K.; Mobin, S. M. Functionalized Cu-MOF@CNT hybrid: Synthesis, crystal structure and applicability in supercapacitors. Chem. —Asian J. 2019, 14, 3566–3571.

42

Shen, C. H.; Chuang, C. H.; Gu, Y. J.; Ho, W. H.; Song, Y. D.; Chen, Y. C.; Wang, Y. C.; Kung, C. W. Cerium-based metal-organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Appl. Mater. Interfaces 2021, 13, 16418–16426.

43

Sreekanth, T. V. M.; Dillip, G. R.; Nagajyothi, P. C.; Yoo, K.; Kim, J. Integration of marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions. Appl. Catal. B: Environ. 2021, 285, 119793.

44

Lu, M. X.; Wang, G.; Li, B.; Chen, J.; Zhang, J. C.; Li, Z.; Hou, B. Molecular interaction balanced one- and two-dimensional hybrid nanoarchitectures for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2019, 21, 22283–22292.

45

Chen, S.; Dai, J.; Zeng, X. C. Metal-organic kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): From semiconducting to metallic by metal substitution. Phys. Chem. Chem. Phys. 2015, 17, 5954–5958.

46

Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.

Nano Research
Pages 6112-6120
Cite this article:
Lu M, Wang G, Yang X, et al. In situ growth CNT@MOFs core–shell structures enabling high specific supercapacitances in neutral aqueous electrolyte. Nano Research, 2022, 15(7): 6112-6120. https://doi.org/10.1007/s12274-022-4184-y
Topics:

820

Views

13

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 09 November 2021
Revised: 13 January 2022
Accepted: 24 January 2022
Published: 07 April 2022
© Tsinghua University Press 2022
Return