Journal Home > Volume 15 , Issue 6

Solid-state Li metal batteries with solid electrolytes have built a potential way to solve the safety and low energy density problems of current commercial Li-ion batteries with liquid electrolyte. As a key component of solid-state Li metal batteries, solid electrolytes require high ionic conductivities and good mechanical properties. We have designed a composite solid electrolyte (CSE) consisting of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-Li6.5La3Zr1.5Ta0.5O12 (LLZTO)-succinonitrile (SN) and Li bis(trifluoromethylsulphonyl)imide (LiTFSI). The PVDF-HFP-based porous matrix made by electrospinning ensures good mechanical properties of the electrolyte membrane, and the large proportion of SN filling material makes the electrolyte membrane have an ionic conductivity of 1.11 mS·cm–1 without the addition of liquid electrolyte. The symmetric battery assembled with CSE can be cycled stably for more than 600 h, and the LiFePO4|CSE|Li full battery can also be cycled stably for more than 200 cycles. In addition to Li metal batteries, Li-O2 and Li-CO2 batteries that use CSE as electrolytes also have good performances, reflecting the universality of CSE. CSE does not only guarantee good mechanical properties but also obtain a high ionic conductivity. This design provides a new idea for the commercial application of polymer-based solid batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries

Show Author's information Genrui Qiu1,2Yapeng Shi1,2Bolong Huang1,2,3( )
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China

Abstract

Solid-state Li metal batteries with solid electrolytes have built a potential way to solve the safety and low energy density problems of current commercial Li-ion batteries with liquid electrolyte. As a key component of solid-state Li metal batteries, solid electrolytes require high ionic conductivities and good mechanical properties. We have designed a composite solid electrolyte (CSE) consisting of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-Li6.5La3Zr1.5Ta0.5O12 (LLZTO)-succinonitrile (SN) and Li bis(trifluoromethylsulphonyl)imide (LiTFSI). The PVDF-HFP-based porous matrix made by electrospinning ensures good mechanical properties of the electrolyte membrane, and the large proportion of SN filling material makes the electrolyte membrane have an ionic conductivity of 1.11 mS·cm–1 without the addition of liquid electrolyte. The symmetric battery assembled with CSE can be cycled stably for more than 600 h, and the LiFePO4|CSE|Li full battery can also be cycled stably for more than 200 cycles. In addition to Li metal batteries, Li-O2 and Li-CO2 batteries that use CSE as electrolytes also have good performances, reflecting the universality of CSE. CSE does not only guarantee good mechanical properties but also obtain a high ionic conductivity. This design provides a new idea for the commercial application of polymer-based solid batteries.

Keywords: ionic conductivity, mechanical strength, Li metal batteries, composite solid-state electrolyte, succinonitrile

References(42)

1

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

2

Wang, G.; Xiong, X. H.; Xie, D.; Fu, X. X.; Ma, X. D.; Li, Y. P.; Liu, Y. Z.; Lin, Z.; Yang, C. H.; Liu, M. L. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater. 2019, 23, 701–706.

3

Jena, A.; Meesala, Y.; Hu, S. F.; Chang, H.; Liu, R. S. Ameliorating interfacial ionic transportation in all-solid-state Li-ion batteries with interlayer modifications. ACS Energy Lett. 2018, 3, 2775–2795.

4

Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300.

5

He, Z. J.; Fan, L. Z. Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries. Rare Met. 2018, 37, 488–496.

6

Shi X. M.; Zeng Z. C.; Sun M. Z.; Huang B. L.; Zhang H. T.; Luo W.; Huang Y. H.; Du Y. P.; Yan C. H. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery. Nano Lett. 2021, 21, 9325–9331.

7

Zou, Z. Y.; Li, Y. J.; Lu, Z. H.; Wang, D.; Cui, Y. H.; Guo, B. K.; Li, Y. J.; Liang, X. M.; Feng, J. W.; Li, H. et al. Mobile ions in composite solids. Chem. Rev. 2020, 120, 4169–4221.

8

Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.

9

Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E. Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers. Polymer 1984, 25, 1291–1296.

10

Sun, X. G.; Kerr, J. B. Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate. Macromolecules 2006, 39, 362–372.

11

Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

12

Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.

13

Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.

14

Das, S.; Ghosh, A. Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J. Phys. Chem. B 2017, 121, 5422–5432.

15

Chen, G. H.; Zhang, F.; Zhou, Z. M.; Li, J. R.; Tang, Y. B. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219.

16

Shi, J.; Yang, Y. F.; Shao, H. X. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Memb. Sci. 2018, 547, 1–10.

17

Yue, H. Y.; Li, J. X.; Wang, Q. X.; Li, C. B.; Zhang, J.; Li, Q. H.; Li, X. N.; Zhang, H. S.; Yang, S. T. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 268–274.

18

Li, J.; Lin, Y.; Yao, H. H.; Yuan, C. F.; Liu, J. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane. ChemSusChem 2014, 7, 1901–1908.

19

Liu, M. Z.; Jin, B. Y.; Zhang, Q. H.; Zhan, X. L.; Chen, F. Q. High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane. J. Alloys Compd. 2018, 742, 619–628.

20

Liu, K.; Zhang, Q. Q.; Thapaliya, B. P.; Sun, X. G.; Ding, F.; Liu, X. J.; Zhang, J. L.; Dai, S. In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ion. 2020, 345, 115159.

21

Wang, J.; Huang, G.; Chen, K.; Zhang, X. B. An adjustable-porosity plastic crystal electrolyte enables high-performance all-solid-state lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 9382–9387.

22

Wei, T.; Zhang, Z. H.; Wang, Z. M.; Zhang, Q.; Ye, Y. S.; Lu, J. H.; Rahman, Z. R.; Zhang, Z. U. Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 9428–9435.

23

Qiu, G. R.; Sun, C. W. A quasi-solid composite electrolyte with dual salts for dendrite-free lithium metal batteries. New J. Chem. 2020, 44, 1817–1824.

24

Yi, Q.; Zhang, W. Q.; Li, S. Q.; Li, X. Y.; Sun, C. W. A durable sodium battery with a flexible Na3Zr2Si2PO12-PVDF-HFP composite electrolyte and sodium/carbon cloth anode. ACS Appl. Mater. Interfaces 2018, 10, 35039–35046.

25

Zha, W. P.; Chen, F.; Yang, D. J.; Shen, Q.; Zhang, L. M. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J. Power Sources 2018, 397, 87–94.

26

Alarco, P. J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476–481.

27

Choi, J. H.; Lee, C. H.; Yu, J. H.; Doh, C. H.; Lee, S. M. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 2015, 274, 458–463.

28

Wang, C.; Zhang, H. R.; Dong, S. M.; Hu, Z. L.; Hu, R. X.; Guo, Z. Y.; Wang, T.; Cui, G. L.; Chen, L. Q. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte. Chem. Mater. 2020, 32, 9167–9175.

29

Xue, Y.; Quesnel, D. J. Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Adv. 2016, 6, 7504–7510.

30

Kumar, D.; Hashmi, S. A. Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J. Power Sources 2010, 195, 5101–5108.

31

Zhang, C. H.; Gamble, S.; Ainsworth, D.; Slawin, A. M. Z.; Andreev, Y. G.; Bruce, P. G. Alkali metal crystalline polymer electrolytes. Nat. Mater. 2009, 8, 580–584.

32

Liu, M.; Zhou, D.; He, Y. B.; Fu, Y. Z.; Qin, X. Y.; Miao, C.; Du, H. D.; Li, B. H.; Yang, Q. H.; Lin, Z. Q. et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 2016, 22, 278–289.

33

Wong, D. H. C.; Thelen, J. L.; Fu, Y. B.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; DeSimone, J. M. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. USA 2014, 111, 3327–3331.

34

Hori, M.; Aoki, Y.; Maeda, S.; Tatsumi, R.; Hayakawa, S. Thermal stability of ionic liquids as an electrolyte for lithium-ion batteries. ECS Trans. 2010, 25, 147.

35

Xiao, W.; Li X. H.; Wang Z. X.; Guo H. J.; Wang J. X.; Huang S. L.; Gan L. Physicochemical properties of a novel composite polymer electrolyte doped with vinyltrimethoxylsilane-modified nano-La2O3. J. Rare Earths 2012, 30, 1034–1040.

36

Oh, S.; Nguyen, V. H.; Bui, V. T.; Nam, S.; Mahato, M.; Oh, I. K. Intertwined nanosponge solid-state polymer electrolyte for rollable and foldable lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 11657–11668.

37

Zhang Q.; Gao Z. Q.; Shi X. M.; Zhang C.; Liu K.; Zhang J.; Zhou L.; Ma C. J.; Du Y. P. Recent advances on rare earths in solid lithium ion conductors. J. Rare Earths 2021, 39, 1–10.

38

Rey, I.; Lassègues, J. C.; Grondin, J.; Servant, L. Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim. Acta 1998, 43, 1505–1510.

39

Zhang, X. L.; Gong, Y. D.; Li, S. Q.; Sun, C. W. Porous perovskite La0.6Sr0.4Co0.8Mn0.2O3 nanofibers loaded with RuO2 nanosheets as an efficient and durable bifunctional catalyst for rechargeable Li-O2 batteries. ACS Catal. 2017, 7, 7737–7747.

40

Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal–CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater. 2021, 11, 2100667.

41

Shi Q. L.; Zhang H.; Li T. J.; Yu F. L.; Hou H. J.; Han P. D. Preparation and characterization of LSO-SDC composite electrolytes. J. Rare Earths 2021, 33, 304–309.

42

Wei W. Q.; Liu B. Q.; Gan Y. Q.; Ma H. J.; Cui D. W. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021, 40, 409–416.

File
12274_2022_4183_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 December 2021
Revised: 18 January 2022
Accepted: 20 January 2022
Published: 29 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the support from the National Key R&D Program of China (No. 2021YFA1501101), the National Natural Science Foundation of China (No. 21771156), the National Natural Science Foundation of China/RGC Joint Research Scheme (No. N_PolyU502/21), and the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University (Project Code: 1-ZE2V).

Return