Journal Home > Volume 15 , Issue 6

Electrocatalytic CO2 reduction reaction (CO2RR) is considered an efficient way to convert CO2 into high-value-added chemicals, and thus is of significant social and economic value. Metal single-atomic site catalysts (SASCs) generally have excellent selectivity because of their 100% atomic utilization and uniform structure of active sites, and thus promise a broad range of applications. However, SASCs still face challenges such as low intrinsic activity and low density of active sites. Precise regulation of the microstructures of SASCs is an effective method to improve their CO2RR performance and to obtain deep reduction products. In this article, we systematically summarize the current research status of SASCs developed for highly efficient catalysis of CO2RR, discuss the various structural regulation methods for enhanced activity and selectivity of SASCs for CO2RR, and review the application of in-situ characterization technologies in the SASC-catalyzed CO2RR. We then discuss the problems yet to be solved in this area, and propose the future directions of the research on the design and application of SASCs for CO2RR.


menu
Abstract
Full text
Outline
About this article

Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO2 reduction

Show Author's information Minmin Wang1,§Min Li1,§Yunqi Liu1Chao Zhang2( )Yuan Pan1( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

§ Minmin Wang and Min Li contributed equally to this work.

Abstract

Electrocatalytic CO2 reduction reaction (CO2RR) is considered an efficient way to convert CO2 into high-value-added chemicals, and thus is of significant social and economic value. Metal single-atomic site catalysts (SASCs) generally have excellent selectivity because of their 100% atomic utilization and uniform structure of active sites, and thus promise a broad range of applications. However, SASCs still face challenges such as low intrinsic activity and low density of active sites. Precise regulation of the microstructures of SASCs is an effective method to improve their CO2RR performance and to obtain deep reduction products. In this article, we systematically summarize the current research status of SASCs developed for highly efficient catalysis of CO2RR, discuss the various structural regulation methods for enhanced activity and selectivity of SASCs for CO2RR, and review the application of in-situ characterization technologies in the SASC-catalyzed CO2RR. We then discuss the problems yet to be solved in this area, and propose the future directions of the research on the design and application of SASCs for CO2RR.

Keywords: Electrocatalysis, active site, single-atomic site catalyst, structure regulation, carbon dioxide reduction reaction

References(105)

1

Su, Y. Q.; Xu, H. T.; Wang, J. J.; Luo, X. K.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO. Nano Res. 2018, 12, 625–630.

2

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin. R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A Supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

3

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

4

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

5

Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.

6

Li, X. Q.; Everitt, H. O.; Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. 2019, 12, 1906–1911.

7

Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796.

8

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumð+-N4 Interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

9

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

10

Jin S., Hao Z. M., Zhang K., Yan Z. H., Chen J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem. Int. Ed. 2021, 60, 20627–20648.

11

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-Heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

12

Wu, J.; Bai, X.; Ren, Z. Y.; Du, S. C.; Song, Z.; Zhao, L.; Liu, B. W.; Wang, G. L; Fu, H. G. Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion. Nano Res. 2021, 14, 1053–1060.

13

Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

14

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

15

Huang, P. C.; Cheng, M.; Zhang, H. H.; Zuo, M.; Xiao, C.; Xie, Y. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 2019, 61, 428–434.

16

Jiang, Z.; Wang, Y.; Zhang, X.; Zheng, H. Z.; Wang, X. J.; Liang, Y. Y. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 2019, 12, 2330–2334.

17

Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89–99.

18

Chen, J. Y.; Wang, T. T.; Li, Z. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Feng, P. Y.; Hou, Y. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Res. 2021, 14, 3188–3207.

19

Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

20

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

21

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

22

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

23

Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750.

24

Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

25

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

26

Schneider, J.; Jia, H. F.; Muckerman, J. T.; Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 2012, 41, 2036–2051.

27

Chen, M. J.; Wang, S.; Zhang, H. Y.; Zhang, P.; Tian, Z. Q.; Lu, M.; Xie, X. J.; Huang, L.; Huang, W. Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Res. 2020, 13, 729–735.

28

Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 2017, 7, 70–88.

29

Lates, V.; Falch, A.; Kriek, R. J. Combinatorial synthesis of gold-based thin films for improved electrocatalytic conversion of CO2 to CO. Electrocatalysis 2015, 6, 308–314.

30

Kortlever, R.; Balemans, C.; Kwon, Y.; Koper, M. T. M. Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal. Today 2015, 244, 58–62.

31

Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163.

32

Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

33

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

34

Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

35

Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313–2317.

36

Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

37

Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318–2323.

38

Chen, F.; Jiang, X. Z.; Zhang, L. L.; Lang, R.; Qiao, B. T. Single-atom catalysis: Bridging the homo- and heterogeneous catalysis. Chin. J. Catal. 2018, 39, 893–898.

39

Xue, D. P.; Xia, H. C.; Yan, W. F.; Zhang, J. N.; Mu, S. C. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 2021, 13, 5.

40

Lü, F.; Bao, H. H.; Mi, Y. Y.; Liu, Y. F.; Sun, J. Q.; Peng, X. Y.; Qiu, Y.; Zhuo, L. C.; Liu, X. J.; Luo, J. Electrochemical CO2 reduction: From nanoclusters to single atom catalysts. Sustainable Energy Fuels 2020, 4, 1012–1028.

41

Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.

42

Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

43
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
DOI
44

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

45

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

46

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

47

Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

48

Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

49

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

50

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

51

Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B:Environ. 2020, 268, 118747.

52

He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

53

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

54

Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

55

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

56

Cheng, Y.; Zhao, S. Y.; Li, H. B.; He, S.; Veder, J. P.; Johannessen, B.; Xiao, J. P.; Lu, S. F.; Pan, J.; Chisholm, M. F. et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B:Environ. 2019, 243, 294–303.

57

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

58
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, DOI: 10.1016/j.apmate.2021.10.004.https://doi.org/10.1016/j.apmate.2021.10.004
DOI
59

Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M. M.; Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

60

Wang, M. M.; Li, M.; Zhao, Y. L.; Shi, N. Y.; Zhang, H.; Zhao, Y. X.; Zhang, Y. R.; Zhang, H. R.; Wang, W. H.; Sun, K. A. et al. Construction of N-doped carbon frames anchored with Co single atoms and Co nanoparticles as robust electrocatalyst for hydrogen evolution in the entire pH range. J. Energy Chem. 2022, 67, 147–156.

61
Li, M.; Wang, M. M.; Liu, D. Y.; Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, Y. J.; Zhu, H. Y.; Guo, W. Y.; Li, Y. P. et al. Atomically-dispersed NiN4-Cl active sites with axial Ni-Cl coordination for accelerating electrocatalytic hydrogen evolution. J. Mater. Chem. A, in press, DOI: 10.1039/D1TA08287F.
62

Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.

63

Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study. ACS Catal. 2017, 7, 1520–1525.

64

Zhu, Y.; Li, X. Y.; Wang, X. P.; Lv, K. L.; Xiao, G. Z.; Feng, J. J.; Jiang, X. H.; Fang, M. W.; Zhu, Y. Single-atom iron-nitrogen catalytic site with graphitic nitrogen for efficient electroreduction of CO2. ChemistrySelect 2020, 5, 1282–1287.

65

Wu, S. D.; Lv, X. N.; Ping, D.; Zhang, G. W.; Wang, S. W.; Wang, H.; Yang, X. Z.; Guo, D. J.; Fang, S. M. Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO. Electrochim. Acta 2020, 340, 135930.

66

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

67

Yang, H. P.; Lin, Q.; Wu, Y.; Li, G. D.; Hu, Q.; Chai, X. Y.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 2020, 70, 104454.

68

Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

69

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

70

Lu, P. L.; Yang, Y. J.; Yao, J. N.; Wang, M.; Dipazir, S.; Yuan, M. L.; Zhang, J. X.; Wang, X.; Xie, Z. J.; Zhang, G. J. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Appl. Catal. B:Environ. 2019, 241, 113–119.

71

Kou, W.; Zhang, Y. X.; Dong, J.; Mu, C. H.; Xu, L. B. Nickel-nitrogen-doped three-dimensional ordered macro-/mesoporous carbon as an efficient electrocatalyst for CO2 reduction to CO. ACS Appl. Energy Mater. 2020, 3, 1875–1882.

72

Mou, K. W.; Chen, Z. P.; Zhang, X. X.; Jiao, M. Y.; Zhang, X. P.; Ge, X.; Zhang, W.; Liu, L. C. Highly efficient electroreduction of CO2 on nickel single-atom catalysts: Atom trapping and nitrogen anchoring. Small 2019, 15, 1903668.

73
Guo, Z.; Xiao, N.; Li, H. Q.; Wang, Y. W.; Li, C.; Liu, C.; Xiao, J.; Bai, J. P.; Zhao, S. J.; Qiu, J. S. Achieving efficient electroreduction CO2 to CO in a wide potential range over pitch-derived ordered mesoporous carbon with engineered Ni-N sites. J. CO2 Util. 2020, 38, 212–219.https://doi.org/10.1016/j.jcou.2020.01.020
DOI
74

He, S.; Ji, D.; Zhang, J. W.; Novello, P.; Li, X. Q.; Zhang, Q.; Zhang, X. X.; Liu, J. Understanding the origin of selective reduction of CO2 to CO on single-atom nickel catalyst. J. Phys. Chem. B 2020, 124, 511–518.

75

Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

76

Zhang, T.; Verma, S.; Kim, S.; Fister, T. T.; Kenis, P. J. A.; Gewirth, A. A. Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane. J. Electroanal. Chem. 2020, 875, 113862.

77

Cai, Y. M.; Fu, J. J.; Zhou, Y.; Chang, Y. C.; Min, Q. H.; Zhu, J. J.; Lin, Y. H.; Zhu, W. L. Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.

78

Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303–12307.

79

Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 2019, 31, 1808135.

80

Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

81

Sun, X. F.; Chen, C. J.; Liu, S. J.; Hong, S.; Zhu, Q. G.; Qian, Q. L.; Han, B. X.; Zhang, J.; Zheng, L. R. Aqueous CO2 reduction with high efficiency using α-Co(OH)2-supported atomic Ir electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 4669–4673.

82

Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

83

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

84

Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

85

Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.

86

Geng, Z. G.; Cao, Y. J.; Chen, W. X.; Kong, X. D.; Liu, Y.; Yao, T.; Lin, Y. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B:Environ. 2019, 240, 234–240.

87

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

88

Pan, F. P.; Li, B. Y.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X. H.; Xiang, X. M.; Adli, N. M.; Li, T.; Su, D. et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy 2020, 68, 104384.

89

Pan, F. P.; Liang, A. M.; Duan, Y. X.; Liu, Q.; Zhang, J. Y.; Li, Y. Self-growth-templating synthesis of 3D N, P, Co-doped mesoporous carbon frameworks for efficient bifunctional oxygen and carbon dioxide electroreduction. J. Mater. Chem. A 2017, 5, 13104–13111.

90

Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

91

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

92

Zhao, Z. L.; Lu, G. Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: First-principles predictions. J. Phys. Chem. C 2019, 123, 4380–4387.

93

Zhao, Y.; Liang, J. J.; Wang, C. Y.; Ma, J. M.; Wallace, G. G. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 2018, 8, 1702524.

94

Ma, S. S.; Su, P. P.; Huang, W. J.; Jiang, S. P.; Bai, S. Y.; Liu, J. Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO2 reduction. ChenCatChem 2019, 11, 6092–6098.

95

Zhang, M. L.; Wu, T. S.; Hong, S.; Fan, Q.; Soo, Y. L.; Masa, J.; Qiu, J. S.; Sun, Z. Y. Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance. ACS Sustainable Chem. Eng. 2019, 7, 15030–15035.

96

Cheng, Q. Q.; Mao, K.; Ma, L. S.; Yang, L. J.; Zou, L. L.; Zou, Z. Q.; Hu, Z.; Yang, H. Encapsulation of iron nitride by Fe-N-C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 2018, 3, 1205–1211.

97

Liu, X.; Wang, Z. X.; Tian, Y.; Zhao, J. X. Graphdiyne-supported single iron atom: A promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. J. Phys. Chem. C 2020, 124, 3722–3730.

98
He, T. W.; Zhang, L.; Kour, G.; Du, A. J. Electrochemical reduction of carbon dioxide on precise number of Fe atoms anchored graphdiyne. J. CO2 Util. 2020, 37, 272–277.https://doi.org/10.1016/j.jcou.2019.12.025
DOI
99

Qin, X. P.; Zhu, S. Q.; Xiao, F.; Zhang, L. L.; Shao, M. H. Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction. ACS Energy Lett. 2019, 4, 1778–1783.

100

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

101

Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803.

102

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, J. Y.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

103

Varela, A. S.; Sahraie, N. R.; Steinberg, J.; Ju, W.; Oh, H. S.; Strasser, P. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem., Int. Ed. 2015, 54, 10758–10762.

104

Cheng, M. J.; Clark, E. L.; Pham, H. H.; Bell, A. T.; Head-Gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 2016, 6, 7769–7777.

105

Guo, J. Y.; Zhang, W. L.; Zhang, L. H.; Chen, D. T.; Zhan, J. Y.; Wang, X. L.; Shiju, N. R.; Yu, F. S. Control over electrochemical CO2 reduction selectivity by coordination engineering of tin single-atom catalysts. Adv. Sci. 2021, 8, 2102884.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2021
Revised: 14 January 2022
Accepted: 17 January 2022
Published: 17 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by Taishan Scholars Program of Shandong Province (No. tsqn201909065), Shandong Provincial Natural Science Foundation (Nos. ZR2021YQ15 and ZR2020QB174), the National Natural Science Foundation of China (No. 22108306), Postgraduate Innovation Fund of China University of Petroleum (East China) (No. YCX2021064)

Return