Journal Home > Volume 15 , Issue 5

Sustainable mitigation of the continuously rising concentration of NO contaminants is among the most urgent issues of this century. Ambient electrocatalytic conversion of NO into useful NH3 offers an attractive path toward achieving sustainable NO abatement and NH3 production simultaneously. However, its efficiency is challenged by the intense competition from hydrogen evolution reaction and relatively high energy barriers of NO activation. It is thus highly desirable to explore active electrocatalyst for NO reduction reaction and investigate the mechanisms on relevant surfaces. Herein, we introduce an FeP nanorod array on carbon cloth as a high-efficiency catalyst for NO electroreduction to NH3. In 0.2 M phosphate-buffered solution, this catalyst exhibits a low onset potential of −0.014 V. Moreover, it achieves a remarkable Faradaic efficiency of 88.49% and a large NH3 yield of 85.62 μmol·h−1·cm−2, with durability for stable NO conversion over 12 h of electrolysis. The catalytic mechanism on FeP is investigated further by theoretical calculations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions

Show Author's information Jie Liang1Qiang Zhou2Ting Mou1Hongyu Chen1Luchao Yue1Yongsong Luo1Qian Liu3Mohamed S. Hamdy4Abdulmohsen Ali Alshehri5Feng Gong2( )Xuping Sun1( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

Sustainable mitigation of the continuously rising concentration of NO contaminants is among the most urgent issues of this century. Ambient electrocatalytic conversion of NO into useful NH3 offers an attractive path toward achieving sustainable NO abatement and NH3 production simultaneously. However, its efficiency is challenged by the intense competition from hydrogen evolution reaction and relatively high energy barriers of NO activation. It is thus highly desirable to explore active electrocatalyst for NO reduction reaction and investigate the mechanisms on relevant surfaces. Herein, we introduce an FeP nanorod array on carbon cloth as a high-efficiency catalyst for NO electroreduction to NH3. In 0.2 M phosphate-buffered solution, this catalyst exhibits a low onset potential of −0.014 V. Moreover, it achieves a remarkable Faradaic efficiency of 88.49% and a large NH3 yield of 85.62 μmol·h−1·cm−2, with durability for stable NO conversion over 12 h of electrolysis. The catalytic mechanism on FeP is investigated further by theoretical calculations.

Keywords: density functional theory, electrocatalysis, NH3 synthesis , FeP nanoarray, NO reduction reaction

References(61)

1

Murad, F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel Lecture). Angew. Chem., Int. Ed. 1999, 38, 1856–1868.

DOI
2

Moncada, S.; Palmer, R. M.; Higgs, E. A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–142.

3

Conner, E. M.; Grisham, M. B. Nitric oxide: Biochemistry, physiology, and pathophysiology. Methods 1995, 7, 3–13.

4

Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

5

Huo, H.; Zhang, Q.; Liu, F.; He, K. B. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: A life-cycle analysis at provincial level. Environ. Sci. Technol. 2013, 47, 1711–1718.

6

Semakula, M.; Inambao, F. Formation and control of nitrogen oxides. Catal. Today 1988, 2, 369–379.

7

Qian, H. Q.; Xu, S. D.; Cao, J.; Ren, F. Z.; Wei, W. D.; Meng, J.; Wu, L. B. Air pollution reduction and climate co-benefits in China’s industries. Nat. Sustain. 2021, 4, 417–425.

8

Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sust. Energy Rev. 2021, 135, 110113.

9

Li, K.; Jacob, D. J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K. H.; Zhang, Q.; Zhai, S. X. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910.

10

He, H.; Wang, Y. S.; Ma, Q. X.; Ma, J. Z.; Chu, B. W.; Ji, D. S.; Tang, G. Q.; Liu, C.; Zhang, H. X.; Hao, J. M. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Sci. Rep. 2014, 4, 4172.

11

Eckel, S. P.; Zhang, Z. L.; Habre, R.; Rappaport, E. B.; Linn, W. S.; Berhane, K.; Zhang, Y.; Bastain, T. M.; Gilliland, F. D. Traffic-related air pollution and alveolar nitric oxide in southern California children. Eur. Respir. J. 2016, 47, 1348–1356.

12

Pagalan, L.; Bickford, C.; Weikum, W.; Lanphear, B.; Brauer, M.; Lanphear, N.; Hanley, G. E.; Oberlander, T. F.; Winters, M. Association of prenatal exposure to air pollution with autism spectrum disorder. JAMA Pediatr. 2019, 173, 86–92.

13

Han, L. P.; Cai, S. X.; Gao, M.; Hasegawa, J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976.

14

Forzatti, P. Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A:Gen. 2001, 222, 221–236.

15

De Oliveira, M. L. M.; Silva, C. M.; Moreno-Tost, R.; Farias, T. L.; Jiménez-López, A. Rodríguez-Castellón, E. A study of copper-exchanged mordenite natural and ZSM-5 zeolites as SCR-NOx catalysts for diesel road vehicles: Simulation by neural networks approach. Appl. Catal. B:Environ. 2009, 88, 420–429.

16

Kim, C. H.; Qi, G.; Dahlberg, K.; Li, W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 2010, 327, 1624–1627.

17

Serrano-Lotina, A.; Monte, M.; Iglesias-Juez, A.; Pavón-Cadierno, P.; Portela, R.; Ávila, P. MnOx-support interactions in catalytic bodies for selective reduction of NO with NH3. Appl. Catal. B:Environ. 2019, 256, 117821.

18

Kim, D. H.; Ringe, S.; Kim, H.; Kim, S.; Kim, B.; Bae, G.; Oh, H. S.; Jaouen, F.; Kim, W.; Kim, H. et al. Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nat. Commun. 2021, 12, 1856.

19

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

20

Wan, H.; Bagger, A.; Rossmeisl, J. Electrochemical nitric oxide reduction on metal surfaces. Angew. Chem., Int. Ed. 2021, 60, 21966–21972.

21

Xiao, Y.; Shen, C. Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 2021, 17, 2100776.

22

Long, J.; Guo, C. X.; Fu, X. Y.; Jing, H. J.; Qin, G. Q.; Li, H.; Xiao, J. P. Unveiling potential dependence in NO electroreduction to ammonia. J. Phys. Chem. Lett. 2021, 12, 6988–6995.

23

Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

24

Li, Z. R.; Ma, Z. Y.; Liang, J.; Ren, Y. C.; Li, T. S.; Xu, S. R.; Liu, Q.; Li, N.; Tang, B.; Liu, Y. et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100586.

25

Schlögl, R. Catalytic synthesis of ammonia—a “never-ending story”. Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

26

Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

27

Du, Y. Q.; Jiang, C.; Song, L.; Gao, B.; Gong, H.; Xia, W.; Sheng, L.; Wang, T.; He, J. P. Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res. 2020, 13, 2784–2790.

28

Chen, H. J.; Liang, J.; Li, L.; Zheng, B. Z.; Feng, Z. S.; Xu, Z. Q.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Liu, Y. et al. Ti2O3 nanoparticles with Ti3+ sites toward efficient NH3 electrosynthesis under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 41715–41722.

29

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

30

Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564.

31

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

32

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

33

Mou, T.; Long, J.; Frauenheim, T.; Xiao, J. P. Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source. ChemPlusChem 2021, 86, 1211–1224.

34

Pal, N.; Jana, M.; Majumdar, A. Reduction of NO by diiron complexes in relation to flavodiiron nitric oxide reductases. Chem. Comm. 2021, 57, 8682–8698.

35

Cuesta, A.; Escudero, M. Electrochemical and FTIRS characterisation of NO adlayers on cyanide-modified Pt(111) electrodes: The mechanism of nitric oxide electroreduction on Pt. Phys. Chem. Chem. Phys. 2008, 10, 3628–3634.

36

Kim, D.; Shin, D.; Heo, J.; Lim, H.; Lim, J. A.; Jeong, H. M.; Kim, B. S.; Heo, I.; Oh, I.; Lee, B. et al. Unveiling electrode-electrolyte design-based NO reduction for NH3 synthesis. ACS Energy Lett. 2020, 5, 3647–3656.

37

Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.

38

Yan, Y. G.; Huang, B. B.; Wang, J. Y.; Wang, H. F.; Cai, W. B. In situ surface-enhanced IR absorption spectroscopy on the adsorption and reduction of nitric oxide at ruthenium electrode. J. Catal. 2007, 249, 311–317.

39

Shibata, M.; Murase, K.; Furuya, N. Reduction of nitrogen monoxide to nitrogen at gas diffusion electrodes with noble metal catalysts. J. Appl. Electrochem. 1998, 28, 1121–1125.

40

Shi, J. W.; Wang, C. H.; Yang, R.; Chen, F. P.; Meng, N. N.; Yu, Y. F.; Zhang, B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 2021, 64, 1493–1497.

41

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

42

Liu, H.; Xiang, K. S.; Yang, B. T.; Xie, X. F.; Wang, D. L.; Zhang, C.; Liu, Z. L.; Yang, S.; Liu, C.; Zou, J. P. et al. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid. Environ. Sci. Pollut. Res. 2017, 24, 14249–14258.

43

Averill, B. A. Dissimilatory nitrite and nitric oxide reductases. Chem. Rev. 1996, 96, 2951–2964.

44

Wasser, I. M.; de Vries, S.; Moënne-Loccoz, P.; Schröder, I.; Karlin, K. D. Nitric oxide in biological denitrification:  Fe/Cu metalloenzyme and metal complex NOx redox chemistry. Chem. Rev. 2002, 102, 1201–1234.

45

Toth, J. E.; Anson, F. C. Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates. J. Am. Chem. Soc. 1989, 111, 2444–2451.

46

Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

47

Shi, Y. M.; Li, M. Y.; Yu, Y. F.; Zhang, B. Recent advances in nanostructured transition metal phosphides: Synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564–4582.

48

Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

49

Li, Y.; Gong, F.; Zhou, Q.; Feng, X. H.; Fan, J. J.; Xiang, Q. J. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118381.

50

Gong, F.; Ding, Z. W.; Fang, Y.; Tong, C. J.; Xia, D. W.; Lv, Y. Y.; Wang, B.; Papavassiliou, D. V.; Liao, J. X.; Wu, M. Q. Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: Insights from multiscale modeling. ACS Appl. Mater. Interfaces 2018, 10, 14614–14621.

51

Gong, F.; Li, H.; Zhou, Q.; Wang, M. Z.; Wang, W. B.; Lv, Y. L.; Xiao, R.; Papavassiliou, D. V. Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation. Nano Energy 2020, 74, 104922.

52

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

53

Peng, X.; Qasim, A. M.; Jin, W. H.; Wang, L.; Hu, L. S.; Miao, Y. P.; Li, W.; Li, Y.; Liu, Z. T.; Huo, K. F. et al. Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: An advanced alkaline hydrogen evolution electrocatalyst. Nano Energy 2018, 53, 66–73.

54

Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP Catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.

55

Yan, Y.; Shi, X. R.; Miao, M.; He, T.; Dong, Z. H.; Zhan, K.; Yang, J. H.; Zhao, B.; Xia, B. Y. Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction. Nano Res. 2018, 11, 3537–3547.

56

Qian, C.; Kim, F.; Ma, L.; Tsui, F.; Yang, P. D.; Liu, J. Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires. J. Am. Chem. Soc. 2004, 126, 1195–1198.

57

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

58

Liu, P. Y.; Liang, J.; Wang, J. Q.; Zhang, L. C.; Li, J.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L.; Li, N. et al. High-performance NH3 production via NO electroreduction over a NiO nanosheet array. Chem. Commun. 2021, 57, 13562–13565.

59

Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 2021, 14, 2711–2716.

60
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
DOI
61

Zhou, Q.; Gong, F.; Xie, Y. L.; Xia, D. W.; Hu, Z. G.; Wang, S. J.; Liu, L. S.; Xiao, R. A general strategy for designing metal-free catalysts for highly-efficient nitric oxide reduction to ammonia. Fuel 2022, 310, 122442.

File
12274_2022_4174_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 December 2021
Revised: 12 January 2022
Accepted: 13 January 2022
Published: 07 March 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52076045 and 22072015). The authors would also like to express their gratitude to Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through the Research Group Program under Grant No. RGP.1/70/42.

Return