Journal Home > Volume 15 , Issue 6

The production of two-dimensional nanosheets (2D NSs) with all sizes (1–100 nm) and few (< 10) layers is highly desired but far from satisfactory. Herein, we report an all-physical top-down method to produce indium chalcogenide (In2X3 (X = S, Se, Te)) NSs with wide-range (150–3.0 nm) controlled sizes. The method combines silica-assisted ball-milling and sonication-assisted solvent exfoliation to fabricate multiscale NSs with varying distributions, which are then precisely separated by cascade centrifugation. Multiple characterization techniques reveal that the as-produced In2X3 NSs are intrinsic and defect-free and remain β-phase during the whole process. The redispersions of In2X3 NSs exhibit prominent excitation wavelength-, solvent-, concentration-, and size-dependent photoluminescence. The NSs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate strong size effects in nonlinear saturation absorption. The absolute modulation depths of 35.4%, 43.3%, 47.2% and saturation intensities of 1.63, 1.05, 0.83 MW·cm−2 (i.e., 163, 105, and 83 nJ·cm−2) are derived for the In2S3, In2Se3, and In2Te3 quantum sheets, respectively. Our method paves the way for mass production and full exploration of full-scale 2D NSs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phase/size dual controlled 2D semiconductor In2X3 (X = S, Se, Te) for saturable absorption modulation

Show Author's information Weibiao Wang1,2,§Zhexue Chen1,2,§Xinyu Sui2,3,§Yueqi Li1,2Xinfeng Liu2,3( )Yong Zhang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

§ Weibiao Wang, Zhexue Chen, and Xinyu Sui contributed equally to this work.

Abstract

The production of two-dimensional nanosheets (2D NSs) with all sizes (1–100 nm) and few (< 10) layers is highly desired but far from satisfactory. Herein, we report an all-physical top-down method to produce indium chalcogenide (In2X3 (X = S, Se, Te)) NSs with wide-range (150–3.0 nm) controlled sizes. The method combines silica-assisted ball-milling and sonication-assisted solvent exfoliation to fabricate multiscale NSs with varying distributions, which are then precisely separated by cascade centrifugation. Multiple characterization techniques reveal that the as-produced In2X3 NSs are intrinsic and defect-free and remain β-phase during the whole process. The redispersions of In2X3 NSs exhibit prominent excitation wavelength-, solvent-, concentration-, and size-dependent photoluminescence. The NSs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate strong size effects in nonlinear saturation absorption. The absolute modulation depths of 35.4%, 43.3%, 47.2% and saturation intensities of 1.63, 1.05, 0.83 MW·cm−2 (i.e., 163, 105, and 83 nJ·cm−2) are derived for the In2S3, In2Se3, and In2Te3 quantum sheets, respectively. Our method paves the way for mass production and full exploration of full-scale 2D NSs.

Keywords: photoluminescence, semiconductor, quantum sheets, intrinsic, nonlinear saturation absorption

References(47)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Zhang, P. P.; Wang, F. X.; Yu, M. H.; Zhuang, X. D.; Feng, X. L. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 2018, 47, 7426–7451.

3

Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

4

Zhao, P.; Ma, Y. D.; Lv, X. S.; Li, M. M.; Huang, B. B.; Dai, Y. Two-dimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy 2018, 51, 533–538.

5

Ding, J.; Shao, D. F.; Li, M.; Wen, L. W.; Tsymbal, E. Y. Two-dimensional antiferroelectric tunnel junction. Phys. Rev. Lett. 2021, 126, 057601.

6

Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.

7

Shi, H. H.; Li, M. M.; Shaygan Nia, A.; Wang, M. C.; Park, S.; Zhang, Z.; Lohe, M. R.; Yang, S.; Feng, X. L. Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics. Adv. Mater. 2020, 32, 1907244.

8

Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258.

9

Island, J. O.; Blanter, S. I.; Buscema, M.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 2015, 15, 7853–7858.

10

Im, T. H.; Lee, C. H.; Kim, J. C.; Kim, S.; Kim, M.; Park, C. M.; Lee, H. E.; Park, J. H.; Jang, M. S.; Lee, D. C. et al. Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy 2021, 84, 105889.

11

Cai, W. F.; Wang, J. Y.; He, Y. M.; Liu, S.; Xiong, Q. H.; Liu, Z.; Zhang, Q. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction. Nano-Micro Lett. 2021, 13, 74.

12

Lin, L. Y.; Jones, T. W.; Yang, T. C. J.; Duffy, N. W.; Li, J. H.; Zhao, L.; Chi, B.; Wang, X. B.; Wilson, G. J. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2008300.

13

Yang, B.; Wang, M.; Hu, X. F.; Zhou, T. W.; Zang, Z. G. Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 2019, 57, 718–727.

14

Xue, F.; He, X.; Wang, Z. Y.; Retamal, J. R. D.; Chai, Z.; Jing, L. L.; Zhang, C. H.; Fang, H.; Chai, Y.; Jiang, T. et al. Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 2021, 33, 2008709.

15

Wang, S. Y.; Liu, L.; Gan, L. R.; Chen, H. W.; Hou, X.; Ding, Y.; Ma, S. L.; Zhang, D. W.; Zhou, P. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nature Commun. 2021, 12, 53.

16

Zhang, J. J.; Zhu, D. Y.; Yakobson, B. I. Heterobilayer with ferroelectric switching of topological state. Nano Lett. 2021, 21, 785–790.

17

Hu, T.; Su, H. S.; Li, Q. Y.; Kan, E. J. Tunable ferroelectric single-atom catalysis of CO oxidation using a Pt/In2Se3 monolayer. J. Mater. Chem. A 2020, 8, 20725–20731.

18

Fu, C. F.; Sun, J. Y.; Luo, Q. Q.; Li, X. X.; Hu, W.; Yang, J. L. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 2018, 18, 6312–6317.

19

Xue, F.; Zhang, J. W.; Hu, W. J.; Hsu, W. T.; Han, A.; Leung, S. F.; Huang, J. K.; Wan, Y.; Liu, S. H.; Zhang, J. L. et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 2018, 12, 4976–4983.

20

Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z. J.; Ou, J. Z. Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett. 2020, 12, 66.

21

Wang, X. W.; Sun, G. Z.; Li, N.; Chen, P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 2016, 45, 2239–2262.

22

Wang, Z. X.; Safdar, M.; Jiang, C.; He, J. High-performance UV–visible–NIR broad spectral photodetectors based on one-dimensional In2Te3 nanostructures. Nano Lett. 2012, 12, 4715–4721.

23

Almeida, G.; Dogan, S.; Bertoni, G.; Giannini, C.; Gaspari, R.; Perissinotto, S.; Krahne, R.; Ghosh, S.; Manna, L. Colloidal monolayer β-In2Se3 nanosheets with high photoresponsivity. J. Am. Chem. Soc. 2017, 139, 3005–3011.

24

Zheng, C. X.; Yu, L.; Zhu, L.; Collins, J. L.; Kim, D.; Lou, Y. D.; Xu, C.; Li, M.; Wei, Z.; Zhang, Y. P. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 2018, 4, eaar7720.

25

Wang, J. M.; Yu, H. Z.; Hou, C. L.; Zhang, J. Solution-processable 2D α-In2Se3 as an efficient hole transport layer for high-performance and stable polymer solar cells. Sol. RRL 2020, 4, 1900428.

26

Han, C. C.; Zhang, Y.; Gao, P.; Chen, S. L.; Liu, X. F.; Mi, Y.; Zhang, J. Q.; Ma, Y. H.; Jiang, W. Y.; Chang, J. Q. High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett. 2017, 17, 7767–7772.

27

Xu, Y. Q.; Chen, S. L.; Dou, Z. P.; Ma, Y. H.; Mi, Y.; Du, W. N.; Liu, Y.; Zhang, J. Q.; Chang, J. Q.; Liang, C. et al. Robust production of 2D quantum sheets from bulk layered materials. Mater. Horiz. 2019, 6, 1416–1424.

28

Liang, C.; Sui, X. Y.; Wang, A. C.; Chang, J. Q.; Wang, W. B.; Chen, Z. X.; Jiang, W. Y.; Ma, Y. H.; Zhang, J. Q.; Liu, X. F. et al. Controlled production of MoS2 full-scale nanosheets and their strong size effects. Adv. Mater. Interfaces 2020, 7, 2001130.

29

Xu, Y. Q.; Chang, J. Q.; Liang, C.; Sui, X. Y.; Ma, Y. H.; Song, L. T.; Jiang, W. Y.; Zhou, J.; Guo, H. B.; Liu, X. F. et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets. ACS Appl. Mater. Interfaces 2020, 12, 47784–47791.

30

Xu, Y. Q.; Wang, W. B.; Chen, Z. X.; Sui, X. Y.; Wang, A. C.; Liang, C.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Jiang, W. Y. et al. A general strategy for semiconductor quantum dot production. Nanoscale 2021, 13, 8004–8011.

31

Backes, C.; Szydłowska, B. M.; Harvey, A.; Yuan, S. J.; Vega-Mayoral, V.; Davies, B. R.; Zhao, P. L.; Hanlon, D.; Santos, E. J. G.; Katsnelson, M. I. et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 2016, 10, 1589–1601.

32

Zhang, S. M.; Xu, D. F.; Chen, X. H.; Zhang, S. Y.; An, C. S. Construction of ultrathin 2D/2D g-C3N4/In2Se3 heterojunctions with high-speed charge transfer nanochannels for promoting photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 528, 146858.

33

Huang, W. J.; Gan, L.; Yang, H. T.; Zhou, N.; Wang, R. Y.; Wu, W. H.; Li, H. Q.; Ma, Y.; Zeng, H. B.; Zhai, T. Y. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.

34

Hegab, N. A.; Bekheet, A. E.; Afifi, M. A.; El-Shazly, A. A. Effect of annealing on the optical properties of In2Te3 thin films. Appl. Phys. A 1998, 66, 235–240.

35

Zhou, J. D.; Zeng, Q. S.; Lv, D. H.; Sun, L. F.; Niu, L.; Fu, W.; Liu, F. C.; Shen, Z. X.; Jin, C. H.; Liu, Z. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 2015, 15, 6400–6405.

36

Xu, H. C.; Wang, Y.; Dong, X. L.; Zheng, N.; Ma, H. C.; Zhang, X. F. Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Appl. Catal. B 2019, 257, 117932.

37

Balakrishnan, N.; Staddon, C. R.; Smith, E. F.; Stec, J.; Gay, D.; Mudd, G. W.; Makarovsky, O.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Eaves, L. et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Mater. 2016, 3, 025030.

38

Reshmi, P. M.; Kunjomana, A. G.; Chandrasekharan, K. A. Spherulitic crystallization of β-In2Se3 by physical vapour deposition. Cryst. Res. Technol. 2011, 46, 153–158.

39

Huang, W. J.; Song, M. T.; Zhang, Y.; Zhao, Y. D.; Hou, H. Y.; Hoang, L. H.; Chen, X. B. Defects-induced oxidation of two-dimensional β-In2S3 and its optoelectronic properties. Opt. Mater. 2021, 119, 111372.

40

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.

41

Wang, C.; Zhang, L.; Wang, J. Y.; Su, S.; Jin, X. W.; An, P. J.; Sun, B. W.; Luo, Y. H. Ultra-thin two-dimensional nanosheets for in-situ NIR light-triggered fluorescence enhancement. FlatChem 2020, 24, 100193.

42

Jin, H.; Baek, B.; Kim, D.; Wu, F. L.; Batteas, J. D.; Cheon, J.; Son, D. H. Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots. Nano Lett. 2017, 17, 7471–7477.

43

Li, R. J.; Tang, L. B.; Zhao, Q.; Ly, T. H.; Teng, K. S.; Li, Y.; Hu, Y. B.; Shu, C.; Lau, S. P. In2S3 quantum dots: Preparation, properties and optoelectronic application. Nanoscale Res. Lett. 2019, 14, 161.

44

Wang, C.; Jing, L. R.; Li, X. H.; Wang, Y. M.; Luo, W. F.; Yan, P. G.; Qu, M. J.; Wu, Z. Y. In2Se3 nanosheets for harmonic mode-locked fiber laser. Nanotechnology 2020, 31, 295402.

45

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

46

Zou, Z. X.; Li, D.; Liang, J. W.; Zhang, X. H.; Liu, H. W.; Zhu, C. G.; Yang, X.; Li, L. H.; Zheng, B. Y.; Sun, X. X. et al. Epitaxial synthesis of ultrathin β-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 2020, 12, 6480–6488.

47

Jiang, Y.; Chen, S. L.; Zheng, W. H.; Zheng, B. Y.; Pan, A. L. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 2021, 10, 72.

File
12274_2022_4171_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 November 2021
Revised: 15 January 2022
Accepted: 19 January 2022
Published: 28 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52073070, 21673054, 11874130, and 22073022), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), National Key R&D Program of China (No. 2018YFA0703700), and DNL Cooperation Fund, CAS (DNL202016).

Return