Journal Home > Volume 15 , Issue 5

The emerging two-dimensional (2D) platinum disulfide (PtS2) has driven increasing attentions due to its high electron mobility, good air-stability, and strong interlayer interaction which leads to a widely tunable electronic structure. However, a detailed study on its covalent-like layer-dependent properties remains infant. Herein, we demonstrate the successful production of ultrathin 1T-PtS2 ribbons with thickness centralized almost at monolayer 1L–4L and large domain size up to 210 µm on Au foils using chemical vapor deposition (CVD) technique, which enables macro- and microscopic study of its extraordinary layer-dependent features with precise control of the number of layers. Using electron energy loss spectroscopy (EELS) and optical pump-probe spectroscopy (OPPS), we reveal that both the electron and ultrafast optical absorption signals of the as-grown 2D PtS2 show strong nonlinear layer-dependent responses which manifest discriminated transition in 1L–4L PtS2 ribbons. The layer-dependent nonlinear response of 2D PtS2 can be well interpreted in the frame of calculated electron and phonon structures. These achievements offer a platform for successfully fabricating large-sized ultrathin 2D PtS2 and facilitating our knowledge about its electronic and optoelectronic properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nonlinear electronic and ultrafast optical signatures in chemical vapor-deposited ultrathin PtS2 ribbons

Show Author's information Shaolong Jiang1,§( )Jin Yang2,3,§Liang Zhu1Jiafeng Xie4Weiteng Guo1Erding Zhao1Chaoyu Chen5,6Tianwu Wang4Fuhai Su2( )Yanfeng Zhang7( )Junhao Lin1( )
Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
University of Science and Technology of China, Hefei 230026, China
Great Bay Area Research Institute, Aerospace Information Research Institute (AIR) of Chinese Academy of Science (CAS), Guangzhou 510700, China
Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
International Quantum Academy, and Shenzhen Branch, Hefei National Laboratory, Futian District, Shenzhen 518048, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China

§ Shaolong Jiang and Jin Yang contributed equally to this work.

Abstract

The emerging two-dimensional (2D) platinum disulfide (PtS2) has driven increasing attentions due to its high electron mobility, good air-stability, and strong interlayer interaction which leads to a widely tunable electronic structure. However, a detailed study on its covalent-like layer-dependent properties remains infant. Herein, we demonstrate the successful production of ultrathin 1T-PtS2 ribbons with thickness centralized almost at monolayer 1L–4L and large domain size up to 210 µm on Au foils using chemical vapor deposition (CVD) technique, which enables macro- and microscopic study of its extraordinary layer-dependent features with precise control of the number of layers. Using electron energy loss spectroscopy (EELS) and optical pump-probe spectroscopy (OPPS), we reveal that both the electron and ultrafast optical absorption signals of the as-grown 2D PtS2 show strong nonlinear layer-dependent responses which manifest discriminated transition in 1L–4L PtS2 ribbons. The layer-dependent nonlinear response of 2D PtS2 can be well interpreted in the frame of calculated electron and phonon structures. These achievements offer a platform for successfully fabricating large-sized ultrathin 2D PtS2 and facilitating our knowledge about its electronic and optoelectronic properties.

Keywords: chemical vapor deposition, saturable absorption, platinum disulfide (PtS2) , electronic transition, optical pump-probe spectroscopy

References(49)

1

Li, J. F.; Kolekar, S.; Ghorbani-Asl, M.; Lehnert, T.; Biskupek, J.; Kaiser, U.; Krasheninnikov, A. V.; Batzill, M. Layer-dependent band gaps of platinum dichalcogenides. ACS Nano 2021, 15, 13249–13259.

2

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

3

Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

4

Noh, H. J.; Jeong, J.; Cho, E. J.; Kim, K.; Min, B. I.; Park, B. G. Experimental realization of type-II Dirac fermions in a PdTe2 superconductor. Phys. Rev. Lett. 2017, 119, 016401.

5

Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

6

Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

7

Hu, D. K.; Zhao, T. Q.; Ping, X. F.; Zheng, H. S.; Xing, L.; Liu, X. Z.; Zheng, J. Y.; Sun, L. F.; Gu, L.; Tao, C. G. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 6977–6981.

8

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

9

Huang, Z. S.; Zhang, W. X.; Zhang, W. L. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 2016, 9, 716.

10

Sajjad, M.; Singh, N.; Schwingenschlogl, U. Strongly bound excitons in monolayer PtS2 and PtSe2. Appl. Phys. Lett. 2018, 112, 043101.

11

Li, L.; Wang, W. K.; Chai, Y.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 2017, 27, 1701011.

12

Xu, H. J.; Huang, H. P.; Fei, H. F.; Feng, J. F.; Fuh, H. R.; Cho, J.; Choi, M.; Chen, Y. H.; Zhang, L.; Chen, D. Y. et al. Strategy for fabricating wafer-scale platinum disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8202–8209.

13

Wang, Z.; Wang, P.; Wang, F.; Ye, J. F.; He, T.; Wu, F.; Peng, M.; Wu, P. S.; Chen, Y. F.; Zhong, F. et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945.

14

Bie, Y. Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J. B.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129.

15

Jin, L. L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H. Q.; Lee, S. T.; Liu, Z.; Peng, R. Functionalized graphene oxide in enzyme engineering: A selective modulator for enzyme activity and thermostability. ACS Nano 2012, 6, 4864–4875.

16

Wang, S. X.; Yu, H. H.; Zhang, H. J.; Wang, A. Z.; Zhao, M. W.; Chen, Y. X.; Mei, L. M.; Wang, J. Y. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544.

17

Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 2017, 8, 1906.

18

Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

19

Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.

20

Zhang, Y.; Yin, L.; Chu, J. W.; Shifa, T. A.; Xia, J.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X.; He, J. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 2018, 30, 1803665.

21

Zeng, M. Q.; Liu, J. X.; Zhou, L.; Mendes, R. G.; Dong, Y. Q.; Zhang, M. Y.; Cui, Z. H.; Cai, Z. H.; Zhang, Z.; Zhu, D. M. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 2020, 19, 528–533.

22

Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

23

Lu, J.; Zhang, X.; Su, G.; Yang, W.; Han, K.; Yu, X.; Wan, Y.; Wang, X.; Yang, P. Large-area uniform few-layer PtS2: Synthesis, structure and physical properties. Mater. Today Phys. 2021, 18, 100376.

24

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

25

Wang, L.; Zhang, S. F.; McEvoy, N.; Sun, Y. Y.; Huang, J. W.; Xie, Y. F.; Dong, N. N.; Zhang, X. Y.; Kislyakov, I. M.; Nunzi, J. M. et al. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev. 2019, 13, 1900052.

26

Wang, G. Z.; Wang, K. P.; McEvoy, N.; Bai, Z. Y.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S. et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.

27

Chen, X.; Zhang, S. F.; Wang, L.; Huang, Y. F.; Liu, H. Y.; Huang, J. W.; Dong, N. N.; Liu, W. M.; Kislyakov, I. M.; Nunzi, J. M. et al. Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2. Photonics Res. 2019, 7, 1416–1424.

28

Lu, L.; Wang, W. H.; Wu, L. M.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q.; Fan, D. Y.; Zhang, H. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics 2017, 4, 2852–2861.

29

Wu, L. M.; Xie, Z. J.; Lu, L.; Zhao, J. L.; Wang, Y. Z.; Jiang, X. T.; Ge, Y. Q.; Zhang, F.; Lu, S. B.; Guo, Z. N. et al. Few-layer tin sulfide: A promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 2018, 6, 1700985.

30

Wu, L. M.; Dong, Y. Z.; Zhao, J. L.; Ma, D. T.; Huang, W. C.; Zhang, Y.; Wang, Y. Z.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q. et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 2019, 31, 1807981.

31

Chen, W. Q.; Zhang, F.; Wang, C.; Jia, M. S.; Zhao, X. H.; Liu, Z. R.; Ge, Y. Q.; Zhang, Y. P.; Zhang, H. Nonlinear photonics using low-dimensional metal-halide perovskites: Recent advances and future challenges. Adv. Mater. 2021, 33, 2004446.

32

Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

33

Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.

34

Shi, J. P.; Huan, Y. H.; Hong, M.; Xu, R. Z.; Yang, P. F.; Zhang, Z. P.; Zou, X. L.; Zhang, Y. F. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 2019, 13, 8442–8451.

35

Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small 2019, 15, 1902789.

36

Yang, P. F.; Zhang, S. Q.; Pan, S. Y.; Tang, B.; Liang, Y.; Zhao, X. X.; Zhang, Z. P.; Shi, J. P.; Huan, Y. H.; Shi, Y. P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 2020, 14, 5036–5045.

37

Choi, S. H.; Kim, H. J.; Song, B.; Kim, Y. I.; Han, G.; Nguyen, H. T. T.; Ko, H.; Boandoh, S.; Choi, J. H.; Oh, C. S. et al. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth Au surface. Adv. Mater. 2021, 33, 2006601.

38

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

39

Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886.

40

Huang, J. W.; Dong, N. N.; McEvoy, N.; Wang, L.; Coileáin, C. Ó; Wang, H. Q.; Cullen, C. P.; Chen, C. D.; Zhang, S. F.; Zhang, L. et al. Surface-state assisted carrier recombination and optical nonlinearities in bulk to 2D nonlayered PtS. ACS Nano 2019, 13, 13390–13402.

41

Jiang, S. L.; Yang, J.; Shi, Y. P.; Zhao, J.; Xie, C. Y.; Zhao, L. Y.; Fu, J. T.; Yang, P. F.; Huan, Y. H.; Xie, Q. et al. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Res. 2020, 13, 667–675.

42

Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. Thickness dependent electronic properties of Pt dichalcogenides. npj 2D Mater. Appl. 2019, 3, 2.

43

Bistritzer, R.; MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 2009, 102, 206410.

44

Thomsen, C.; Strait, J.; Vardeny, Z.; Maris, H. J.; Tauc, J.; Hauser, J. J. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 1984, 53, 989–992.

45

Krauss, T. D.; Wise, F. W. Coherent acoustic phonons in a semiconductor quantum dot. Phys. Rev. Lett. 1997, 79, 5102–5105.

46

Jeong, T. Y.; Jin, B. M.; Rhim, S. H.; Debbichi, L.; Park, J.; Jang, Y. D.; Lee, H. R.; Chae, D. H.; Lee, D.; Kim, Y. H. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 2016, 10, 5560–5566.

47

Miao, X. C.; Zhang, G. W.; Wang, F. J.; Yan, H. G.; Ji, M. B. Layer-dependent ultrafast carrier and coherent phonon dynamics in black phosphorus. Nano Lett. 2018, 18, 3053–3059.

48

Zeiger, H. J.; Vidal, J.; Cheng, T. K.; Ippen, E. P.; Dresselhaus, G.; Dresselhaus, M. S. Theory for displacive excitation of coherent phonons. Phys. Rev. B 1992, 45, 768–778.

49

Riffe, D. M.; Sabbah, A. J. Coherent excitation of the optic phonon in Si: Transiently stimulated Raman scattering with a finite-lifetime electronic excitation. Phys. Rev. B 2007, 76, 085207.

File
12274_2022_4168_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 December 2021
Revised: 09 January 2022
Accepted: 17 January 2022
Published: 24 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51991344, 51991340, 11774354, 51727806, 61988102, 11974156, 12174398, and 12104206), Guangdong International Science Collaboration Project (No. 2019A050510001), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2019ZT08C044), Shenzhen Science and Technology Program (Nos. KQTD20190929173815000 and 20200925161102001), and the Science, Technology and Innovation Commission of Shenzhen Municipality (No. ZDSYS20190902092905285). TEM/STEM characterization was performed at the Pico Center from SUSTech Core Research Facilities that receives support from the Presidential Fund and Development and Reform Commission of Shenzhen Municipality.

Return