Journal Home > Volume 15 , Issue 6

Pancreatic cancer is one of the most lethal neoplasms with high metastatic potential and is resistant to almost all current therapies. Epalrestat is an aldo-keto reductase family 1 member B1 (AKR1B1) inhibitor for the treatment of diabetic neuropathy, but its potential application in cancer treatment and the underlying mechanism are largely unknown. Here, we found that AKR1B1 is upregulated in pancreatic cancer and is positively associated with metastasis. Upregulated AKR1B1 promoted exosome secretion, accelerating cell migration in pancreatic cancer cells. Further analysis indicated that AKR1B1 negatively regulated lysosomal function and multivesicular body (MVB) degradation in lysosomes. However, AKR1B1 had a minimal role in the generation of MVBs. Transcription factor EB (TFEB) and MVB-expressed RAB7A were two molecular targets that are negatively regulated by AKR1B1. These results uncovered a critical role for AKR1B1 in the regulation of lysosomal function and exosome secretion. Pharmacological targeting of AKR1B1 by clinically used medicines, such as Epalrestat, might represent an efficient way to inhibit pancreatic growth and metastasis.


menu
Abstract
Full text
Outline
About this article

AKR1B1 promotes pancreatic cancer metastasis by regulating lysosome-guided exosome secretion

Show Author's information Jie Ji1,§Dandan Jin2,§Minxue Xu1,§Yujie Jiao3Yue Wu1Tong Wu1Renjie Lin1Wenjie Zheng4Zhaoxiu Liu1Feng Jiang1Yihui Fan5Mingbing Xiao1,4( )
Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong 226001, China
Third People’s Hospital Affiliated to Nantong University, Nantong 226001, China
Department of Gastroenterology, Second People’s Hospital of Changshu, Changshu 215500, China
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China

§ Jie Ji, Dandan Jin, and Minxue Xu contributed equally to this work.

Abstract

Pancreatic cancer is one of the most lethal neoplasms with high metastatic potential and is resistant to almost all current therapies. Epalrestat is an aldo-keto reductase family 1 member B1 (AKR1B1) inhibitor for the treatment of diabetic neuropathy, but its potential application in cancer treatment and the underlying mechanism are largely unknown. Here, we found that AKR1B1 is upregulated in pancreatic cancer and is positively associated with metastasis. Upregulated AKR1B1 promoted exosome secretion, accelerating cell migration in pancreatic cancer cells. Further analysis indicated that AKR1B1 negatively regulated lysosomal function and multivesicular body (MVB) degradation in lysosomes. However, AKR1B1 had a minimal role in the generation of MVBs. Transcription factor EB (TFEB) and MVB-expressed RAB7A were two molecular targets that are negatively regulated by AKR1B1. These results uncovered a critical role for AKR1B1 in the regulation of lysosomal function and exosome secretion. Pharmacological targeting of AKR1B1 by clinically used medicines, such as Epalrestat, might represent an efficient way to inhibit pancreatic growth and metastasis.

Keywords: pancreatic cancer, lysosome, aldo-keto reductase family 1 member B1 (AKR1B1), exosome secretion, Epalrestat

References(63)

1

Landman, A.; Feetham, L.; Stuckey, D. Working together to reduce the burden of pancreatic cancer. Lancet Oncol. 2020, 21, 334–335.

2

US Preventive Services Task Force. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement. JAMA 2019, 322, 438–444.

3

Bender, E. Will a test to detect early pancreatic cancer ever be possible? Nature 2020, 579, S12–S13.

4

Mueller, S.; Engleitner, T.; Maresch, R.; Zukowska, M.; Lange, S.; Kaltenbacher, T.; Konukiewitz, B.; Öllinger, R.; Zwiebel, M.; Strong, A. et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 2018, 554, 62–68.

5

Zeng, F. C.; Qin, H.; Liu, L. M.; Chang, H. C.; Chen, Q.; Wu, L. H.; Zhang, L.; Wu, Z. J.; Xing, D. Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle. Nano Res. 2020, 13, 3403–3415.

6

Ma, Z. R.; Wan, H.; Wang, W. Z.; Zhang, X. D.; Uno, T.; Yang, Q. L.; Yue, J. Y.; Gao, H. P.; Zhong, Y. T.; Tian, Y. et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res. 2019, 12, 273–279.

7

Zhang, C. X.; Zhang, X. F.; Zhao, W. Y.; Zeng, C. X.; Li, W. Q.; Li, B.; Luo, X.; Li, J. N.; Jiang, J.; Deng, B. B. et al. Chemotherapy drugs derived nanoparticles encapsulating mrna encoding tumor suppressor proteins to treat triple-negative breast cancer. Nano Res. 2019, 12, 855–861.

8

Xie, F.; Zhou, X. X.; Fang, M. Y.; Li, H. Y; Su, P.; Tu, Y. F.; Zhang, L.; Zhou, F. F. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv. Sci. (Weinh) 2019, 6, 1901779.

9

Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

10

Antonyak, M. A.; Li, B.; Boroughs, L. K.; Johnson, J. L.; Druso, J. E.; Bryant, K. L.; Holowka, D. A.; Cerione, R. A. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc. Natl. Acad. Sci. USA 2011, 108, 4852–4857.

11

Tkach, M.; Théry, C. Communication by extracellular vesicles: Where we are and where we need to go. Cell 2016, 164, 1226–1232.

12

Costa-Silva, B.; Aiello, N. M.; Ocean, A. J.; Singh, S.; Zhang, H. Y.; Thakur, B. K.; Becker, A.; Hoshino, A.; Mark, M. T.; Molina, H. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015, 17, 816–826.

13

Datta, A.; Kim, H.; Lal, M.; McGee, L.; Johnson, A.; Moustafa, A. A.; Jones, J. C.; Mondal, D.; Ferrer, M.; Abdel-Mageed, A. B. Manumycin a suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer Lett. 2017, 408, 73–81.

14

Im, E. J.; Lee, C. H.; Moon, P. G.; Rangaswamy, G. G.; Lee, B.; Lee, J. M.; Lee, J. C.; Jee, J. G.; Bae, J. S.; Kwon, T. K. et al. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat. Commun. 2019, 10, 1387.

15

El Andaloussi, S.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357.

16

Lin, S. J.; Yu, Z. X.; Chen, D.; Wang, Z. G.; Miao, J. M.; Li, Q. C.; Zhang, D. Y.; Song, J.; Cui, D. X. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020, 16, e1903916.

17

Jiao, Y. J.; Jin, D. D.; Jiang, F.; Liu, J. X.; Qu, L. S.; Ni, W. K.; Liu, Z. X.; Lu, C. H.; Ni, R. Z.; Zhu, J. et al. Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. J. Cell. Biochem. 2019, 120, 988–999.

18

Kowal, J.; Tkach, M.; Théry, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 2014, 29, 116–125.

19

Hessvik, N. P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018, 75, 193–208.

20

Zou, W. C.; Lai, M. Q.; Zhang, Y.; Zheng, L.; Xing, Z.; Li, T.; Zou, Z. P.; Song, Q. C.; Zhao, X. Y.; Xia, L. X. et al. Exosome release is regulated by mtorc1. Adv. Sci. (Weinh) 2019, 6, 1801313.

21

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, 640.

22

Miao, Y. X.; Li, G. J.; Zhang, X. L.; Xu, H. X.; Abraham, S. N. A trp channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 2015, 161, 1306–1319.

23

Latifkar, A.; Ling, L.; Hingorani, A.; Johansen, E.; Clement, A.; Zhang, X. Y.; Hartman, J.; Fischbach, C.; Lin, H. N.; Cerione, R. A. et al. Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity. Dev. Cell 2019, 49, 393–408.e7.

24

Yang, L.; Peng, X. Q.; Li, Y.; Zhang, X. D.; Ma, Y. B.; Wu, C. L.; Fan, Q.; Wei, S. B.; Li, H. Y.; Liu, J. G. Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol. Cancer 2019, 18, 78.

25

Hyenne, V.; Apaydin, A.; Rodriguez, D.; Spiegelhalter, C.; Hoff-Yoessle, S.; Diem, M.; Tak, S.; Lefebvre, O.; Schwab, Y.; Goetz, J. G. et al. Ral-1 controls multivesicular body biogenesis and exosome secretion. J. Cell Biol. 2015, 211, 27–37.

26

Penning, T. M. The aldo-keto reductases (AKRs): Overview. Chem. Biol. Interact. 2015, 234, 236–246.

27

Mindnich, R. D.; Penning, T. M. Aldo-keto reductase (AKR) superfamily: Genomics and annotation. Hum. Genomics 2009, 3, 362–370.

28

Pastel, E.; Pointud, J. C.; Volat, F.; Martinez, A.; Lefrancois-Martinez, A. M. Aldo-keto reductases 1B in endocrinology and metabolism. Front. Pharmacol. 2012, 3, 148.

29

Šušaníková, I.; Balleková, J.; Štefek, M.; Hošek, J.; Mučaji, P. Artichoke leaf extract, as AKR1B1 inhibitor, decreases sorbitol level in the rat eye lenses under high glucose conditions ex vivo. Phytother. Res. 2018, 32, 2389–2395.

30

Zhan, J. Y.; Ma, K.; Zheng, Q. C.; Yang, G. H.; Zhang, H. X. Exploring the interactional details between aldose reductase (AKR1B1) and 3-mercapto-5h-1, 2, 4-triazino[5, 6-b]indole-5-acetic acid through molecular dynamics simulations. J. Biomol. Struct. Dyn. 2019, 37, 1724–1735.

31

Wu, T. T.; Chen, Y. Y.; Chang, H. Y.; Kung, Y. H.; Tseng, C. J.; Cheng, P. W. AKR1B1-induced epithelial-mesenchymal transition mediated by RAGE-oxidative stress in diabetic cataract lens. Antioxidants (Basel) 2020, 9, 273.

32

Michaud, A.; Lacroix-Pépin, N.; Pelletier, M.; Veilleux, A.; Noël, S.; Bouchard, C.; Marceau, P.; Fortier, M. A.; Tchernof, A. Prostaglandin (PG) F2 alpha synthesis in human subcutaneous and omental adipose tissue: Modulation by inflammatory cytokines and role of the human aldose reductase AKR1B1. PLoS One 2014, 9, e90861.

33

Bresson, E.; Lacroix-Pépin, N.; Boucher-Kovalik, S.; Chapdelaine, P.; Fortier, M. A. The prostaglandin F synthase activity of the human aldose reductase AKR1B1 brings new lenses to look at pathologic conditions. Front. Pharmacol. 2012, 3, 98.

34

Bresson, E.; Boucher-Kovalik, S.; Chapdelaine, P.; Madore, E.; Harvey, N.; Laberge, P. Y.; Leboeuf, M.; Fortier, M. A. The human aldose reductase AKR1B1 qualifies as the primary prostaglandin F synthase in the endometrium. J. Clin. Endocrinol. Metab. 2011, 96, 210–219.

35

Seo, H.; Choi, Y.; Shim, J.; Yoo, I.; Ka, H. Comprehensive analysis of prostaglandin metabolic enzyme expression during pregnancy and the characterization of AKR1B1 as a prostaglandin F synthase at the maternal-conceptus interface in pigs. Biol. Reprod. 2014, 90, 1–13.

36

Alzamil, H. A.; Pawade, J.; Fortier, M. A.; Bernal, A. L. Expression of the prostaglandin F synthase AKR1B1 and the prostaglandin transporter SLCO2A1 in human fetal membranes in relation to spontaneous term and preterm labor. Front. Physiol. 2014, 5, 272.

37

Sinreih, M.; Anko, M.; Kene, N. H.; Kocbek, V.; Rižner, T. L. Expression of AKR1B1, AKR1C3 and other genes of prostaglandin F2α biosynthesis and action in ovarian endometriosis tissue and in model cell lines. Chem. Biol. Interact. 2015, 234, 320–331.

38

Wu, X. B.; Li, X. L.; Fu, Q.; Cao, Q. H.; Chen, X. Y.; Wang, M. J.; Yu, J.; Long, J. P.; Yao, J.; Liu, H. X. et al. AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J. Exp. Med. 2017, 214, 1065–1079.

39

Xiao, M. B.; Jin, D. D.; Jiao, Y. J.; Ni, W. K.; Liu, J. X.; Qu, L. S.; Lu, C. H.; Ni, R. Z.; Jiang, F.; Chen, W. C. β2-AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway. Mol. Biol. Rep. 2018, 45, 1863–1871.

40

Ji, J.; Xu, M. X.; Qian, T. Y.; Zhu, S. Z.; Jiang, F.; Liu, Z. X.; Xu, W. S.; Zhou, J.; Xiao, M. B. The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer. Mol. Biol. Rep. 2020, 47, 6091–6103.

41

Taskoparan, B.; Seza, E. G.; Demirkol, S.; Tuncer, S.; Stefek, M.; Gure, A. O.; Banerjee, S. Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer. Cell Oncol. (Dordr) 2017, 40, 563–578.

42

Laffin, B.; Petrash, J. M. Expression of the aldo-ketoreductases AKR1B1 and AKR1B10 in human cancers. Front. Pharmacol. 2012, 3, 104.

43

Reddy, K. A.; Kumar, P. U.; Srinivasulu, M.; Triveni, B.; Sharada, K.; Ismail, A.; Reddy, G. B. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 2017, 31, 137–143.

44

Hevir, N.; Šinkovec, J.; Rižner, T. L. Decreased levels of AKR1B1 and AKR1B10 in cancerous endometrium compared to adjacent non-cancerous tissue. Chem. Biol. Interact. 2013, 202, 226–233.

45

Ebert, B.; Kisiela, M.; Wsól, V.; Maser, E. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29. Chem. Biol. Interact. 2011, 191, 239–249.

46

Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N. et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care 2006, 29, 1538–1544.

47

Ashburn, T. T.; Thor, K. B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683.

48

Yu, L. L.; Zhu, J.; Liu, J. X.; Jiang, F.; Ni, W. K.; Qu, L. S.; Ni, R. Z.; Lu, C. H.; Xiao, M. B. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Res. Int. 2018, 2018, 3634563.

49

Cheng, S. Q.; Chen, M. S.; Cai, J. Q.; Sun, J. X.; Guo, R. P.; Bi, X. Y.; Lau, W. Y.; Wu, M. Chinese expert consensus on multidisciplinary diagnosis and treatment of hepatocellular carcinoma with portal vein tumor thrombus (2018 edition). Liver Cancer 2020, 9, 28–40.

50

Peng, S. Y.; Wang, X. A.; Huang, C. Y.; Li, J. T.; Hong, D. F.; Wang, Y. F.; Xu, B. Better surgical treatment method for hepatocellular carcinoma with portal vein tumor thrombus. World J. Gastroenterol. 2018, 24, 4527–4535.

51

Chao, X. J.; Wang, S. G.; Zhao, K.; Li, Y.; Williams, J. A.; Li, T. G.; Chavan, H.; Krishnamurthy, P.; He, X. C.; Li, L. H. et al. Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 2018, 155, 865–879.e12.

52

Bajaj, L.; Lotfi, P.; Pal, R.; Ronza, A. D.; Sharma, J.; Sardiello, M. Lysosome biogenesis in health and disease. J. Neurochem. 2019, 148, 573–589.

53

Ballabio, A.; Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 101–118.

54

Grossberg, A. J.; Chu, L. C.; Deig, C. R.; Fishman, E. K.; Hwang, W. L.; Maitra, A.; Marks, D. L.; Mehta, A.; Nabavizadeh, N.; Simeone, D. M. et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 2020, 70, 375–403.

55

Vakoc, C. R.; Tuveson, D. A. Soils and seeds that initiate pancreatic cancer metastasis. Cancer Discov. 2017, 7, 1067–1068.

56

Dai, J.; Su, Y. Z.; Zhong, S. Y.; Cong, L.; Liu, B.; Yang, J. J.; Tao, Y. G.; He, Z. P.; Chen, C.; Jiang, Y. Q. Exosomes: Key players in cancer and potential therapeutic strategy. Sig. Transduct. Target. Ther. 2020, 5, 145.

57

Zhang, Y.; Wang, X. F. A niche role for cancer exosomes in metastasis. Nat. Cell Biol. 2015, 17, 709–711.

58

Wei, Y.; Wang, D.; Jin, F. F.; Bian, Z.; Li, L. M.; Liang, H. W.; Li, M. Z.; Shi, L.; Pan, C. Y.; Zhu, D. H. et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat. Commun. 2017, 8, 14041.

59

Da Silva Novaes, A.; Borges, F. T.; Maquigussa, E.; Varela, V. A.; Dias, M. V. S.; Boim, M. A. Influence of high glucose on mesangial cell-derived exosome composition, secretion and cell communication. Sci. Rep. 2019, 9, 6270.

60

Khayami, R.; Hashemi, S. R.; Kerachian, M. A. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J. Cell. Mol. Med. 2020, 24, 8890–8902.

61

Van Niel, G.; D'Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228.

62

Lawrence, R. E.; Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 2019, 21, 133–142.

63

Shin, H. R.; Zoncu, R. The lysosome at the intersection of cellular growth and destruction. Dev. Cell 2020, 54, 226–238.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2021
Revised: 10 January 2022
Accepted: 13 January 2022
Published: 04 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by grants from the National Natural Science Foundation (No. 81702419), the National Science Fund for Distinguished Young Scholars (No. 82000497), the Key Research and Development Plan of Jiangsu Province (Nos. BE2019692 and BE2020668), the Natural Science Foundation of Jiangsu Province (Nos. BK20211105 and BK20200965), the Postdoctoral Science Foundation of China (No. 2019M661909), the Social Development Foundation of Nantong City (Nos. MS22020005 and MSZ20076), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Nos. KYCX20_2681, KYCX20_2673, and KYCX21_3112).

Return