Journal Home > Volume 15 , Issue 6

Narrowband photodetectors as specific spectral sensing pixels have drawn intense attention in multispectral detection due to their distinct characteristic of filter-free spectrum discrimination, in which the emerging halide lead perovskites witness a booming development in their performance and wavelength-selectivity from blue to near-infrared light. However, the challenge in integrating perovskite narrowband photodetectors on one chip imposes an impediment on practical application. In this work, the combination of laser-direct-writing and ion exchange is proposed as an efficient way to fabricate high-definition colorful sensing array with perovskite narrowband photodetector unit as pixel. Under laser irradiation, the photolysis of halocarbon solvent (CHCl3, CH3CH2I, etc) releases the halide ions, which brings the ion exchange and gives rise to slow-varying bandgap in single perovskite photoactive film. This ion exchange can be controlled via laser irradiation time and focus point, thus enabling precisely engineerable bandgap. By optimizing the process, it is successfully applied to develop patterned perovskite narrow blue and green photodetectors array with a high-definition of ~ 53 ppi. We believe this result will make a great step forward to integrate multifunctional perovskite devices on one chip, which will pave the way for perovskite optoelectronic device to the commercial application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing

Show Author's information Xiaobao XuYuhang DongYuanzhou ZhangZeyao HanJiaxin LiuDejian YuYi WeiYousheng Zou( )Bo HuangJun ChenHaibo Zeng( )
Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Narrowband photodetectors as specific spectral sensing pixels have drawn intense attention in multispectral detection due to their distinct characteristic of filter-free spectrum discrimination, in which the emerging halide lead perovskites witness a booming development in their performance and wavelength-selectivity from blue to near-infrared light. However, the challenge in integrating perovskite narrowband photodetectors on one chip imposes an impediment on practical application. In this work, the combination of laser-direct-writing and ion exchange is proposed as an efficient way to fabricate high-definition colorful sensing array with perovskite narrowband photodetector unit as pixel. Under laser irradiation, the photolysis of halocarbon solvent (CHCl3, CH3CH2I, etc) releases the halide ions, which brings the ion exchange and gives rise to slow-varying bandgap in single perovskite photoactive film. This ion exchange can be controlled via laser irradiation time and focus point, thus enabling precisely engineerable bandgap. By optimizing the process, it is successfully applied to develop patterned perovskite narrow blue and green photodetectors array with a high-definition of ~ 53 ppi. We believe this result will make a great step forward to integrate multifunctional perovskite devices on one chip, which will pave the way for perovskite optoelectronic device to the commercial application.

Keywords: perovskite, photodetector, narrowband, imaging array, laser-direct-writing

References(36)

1

Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334.

2
Kim, Y.; Lee, Y. CamPUF: Physically unclonable function based on CMOS image sensor fixed pattern noise. In Proceedings of the 55th ACM/ESDA/IEEE Design Automation Conference, San Francisco, 2018, pp 1–6.https://doi.org/10.1109/DAC.2018.8465908
DOI
3

Chen, Z.; Zhu, H. F.; Ren, E. X.; Liu, Z. Y.; Jia, K. G.; Luo, L.; Zhang, X.; Wei, Q.; Qiao, F.; Liu, X. J. et al. Processing near sensor architecture in mixed-signal domain with CMOS image sensor of convolutional-kernel-readout method. IEEE Trans. Circuits Syst. Regul. Pap. 2020, 67, 389–400.

4

Oh, P.; Lee, S.; Kang, M. G. Colorization-based RGB-white color interpolation using color filter array with randomly sampled pattern. Sensors 2017, 17, 1523.

5

Teranaka, H.; Monno, Y.; Tanaka, M.; Ok, M. Single-sensor RGB and NIR image acquisition: Toward optimal performance by taking account of CFA pattern, demosaicking, and color correction. Electron. Imaging 2016, 2016, 1–6.

6

Kuznetsov, A. I.; Miroshnichenko, A. E.; Brongersma, M. L.; Kivshar, Y. S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472.

7

Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.

8

Makarov, S.; Furasova, A.; Tiguntseva, E.; Hemmetter, A.; Berestennikov, A.; Pushkarev, A.; Zakhidov, A.; Kivshar, Y. Halide-perovskite resonant nanophotonics. Adv. Opt. Mater. 2019, 7, 1800784.

9

Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

10

Zhou, H.; Song, Z. N.; Grice, C. R.; Chen, C.; Yang, X. H.; Wang, H.; Yan, Y. F. Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett. 2018, 9, 4714–4719.

11

Li, T. T.; Liu, M. H.; Li, Q. Y.; Chen, R.; Liu, X. Hybrid photodetector based on CsPbBr3 perovskite nanocrystals and PC71BM fullerene derivative. Chem. Phys. Lett. 2018, 699, 208–211.

12

Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

13

Leung, S. F.; Ho, K. T.; Kung, P. K.; Hsiao, V. K. S.; Alshareef, H. N.; Wang, Z. L.; He, J. H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611.

14

Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.

15

Wang, J.; Li, J. Z.; Lan, S. G.; Fang, C.; Shen, H. Z.; Xiong, Q. H.; Li, D. H. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 2019, 13, 5473–5484.

16

Saidaminov, M. I.; Haque, A.; Savoie, M.; Abdelhady, A. L.; Cho, N.; Dursun, I.; Buttner, U.; Alarousu, E.; Wu, T.; Bakr, O. M. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 2016, 28, 8144–8149.

17

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

18

Lin, Q. Q.; Armin, A.; Burn, P. L.; Meredith, P. Filterless narrowband visible photodetectors. Nat. Photonics 2015, 9, 687–694.

19

Wu, Y.; Li, X. M.; Wei, Y.; Gu, Y.; Zeng, H. B. Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application. Nanoscale 2018, 10, 359–365.

20

Tsai, W. L.; Chen, C. Y.; Wen, Y. T.; Yang, L.; Cheng, Y. L.; Lin, H. W. Band tunable microcavity perovskite artificial human photoreceptors. Adv. Mater. 2019, 31, 1900231.

21

Cao, F.; Chen, J. D.; Yu, D. J.; Wang, S.; Xu, X. B.; Liu, J. X.; Han, Z. Y.; Huang, B.; Gu, Y.; Choy, K. L. et al. Bionic detectors based on low-bandgap inorganic perovskite for selective NIR-I photon detection and imaging. Adv. Mater. 2020, 32, 1905362.

22

Xue, J.; Zhu, Z. F.; Xu, X. B.; Gu, Y.; Wang, S. L.; Xu, L. M.; Zou, Y. S.; Song, J. Z.; Zeng, H. B.; Chen, Q. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 2018, 18, 7628–7634.

23

Cheng, Z. Y.; Wang, Z.; Xing, R. B.; Han, Y. C.; Lin, J. Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography. Chem. Phys. Lett. 2003, 376, 481–486.

24

Feng, J. G.; Yan, X. X.; Zhang, Y. F.; Wang, X. D.; Wu, Y. C.; Su, B.; Fu, H. B.; Jiang, L. “Liquid knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 2016, 28, 3732–3741.

25

Pourdavoud, N.; Wang, S.; Mayer, A.; Hu, T.; Chen, Y. W.; Marianovich, A.; Kowalsky, W.; Heiderhoff, R.; Scheer, H. C.; Riedl, T. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 2017, 29, 1605003.

26

Kim, Y. Y.; Yang, T. Y.; Suhonen, R.; Välimäki, M.; Maaninen, T.; Kemppainen, A.; Jeon, N. J.; Seo, J. Photovoltaic devices: Gravure-printed flexible perovskite solar cells: Toward roll-to-roll manufacturing. Adv. Sci. 2019, 6, 1970044.

27

Chou, S. S.; Swartzentruber, B. S.; Janish, M. T.; Meyer, K. C.; Biedermann, L. B.; Okur, S.; Burckel, D. B.; Carter, C. B.; Kaehr, B. Laser direct write synthesis of lead halide perovskites. J. Phys. Chem. Lett. 2016, 7, 3736–3741.

28

Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

29

Chen, J.; Wu, Y.; Li, X. M.; Cao, F.; Gu, Y.; Liu, K.; Liu, X. H.; Dong, Y. H.; Ji, J. P.; Zeng, H. B. Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv. Mater. Technol. 2017, 2, 1700132.

30

Huang, X. J.; Guo, Q. Y.; Yang, D. D.; Xiao, X. D.; Liu, X. F.; Xia, Z. G.; Fan, F. J.; Qiu, J. R.; Dong, G. P. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 2020, 14, 82–88.

31

Zhou, C. H.; Cao, G. Y.; Gan, Z. X.; Ou, Q. D.; Chen, W. J.; Bao, Q. L.; Jia, B. H.; Wen, X. M. Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Appl. Mater. Interfaces 2019, 11, 26017–26023.

32

Dong, Y. H.; Hu, H.; Xu, X. B.; Gu, Y.; Chueh, C. C.; Cai, B.; Yu, D. J.; Shen, Y. L.; Zou, Y. S.; Zeng, H. B. Photon-induced reshaping in perovskite material yields of nanocrystals with accurate control of size and morphology. J. Phys. Chem. Lett. 2019, 10, 4149–4156.

33

Sharma, P.; Vatsa, R. K.; Maity, D. K.; Kulshreshtha, S. K. Multiphoton dissociation/ionization of CHCl3 and CFCl3 at 355 nm: An experimental and theoretical study. Rapid Commun. Mass Spectrom. 2004, 18, 2383–2387.

34

Wang, Y. X.; Tai, O. Y. H.; Wang, C. H.; Jen, A. K. Y. One-, two-, and three-photon absorption induced fluorescence of a novel chromophore in chloroform solution. J. Chem. Phys. 2004, 121, 7901–7907.

35

Azcarate, M. L.; Quel, E. J.; Toselli, B.; Ferrero, J. C.; Staricco, E. H. Collisional effects in the multiphoton absorption processes of chloroform-d. J. Phys. Chem. 1988, 92, 403–408.

36

Lu, C. H.; Zhang, S. A.; Jia, T. Q.; Qiu, J. R.; Sun, Z. R. Non-resonant two-photon absorption control by two time-delayed laser pulses. J. Nonlinear Opt. Phys. Mater. 2013, 22, 1350008.

File
12274_2022_4163_MOESM1_ESM.pdf (770.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2021
Revised: 13 January 2022
Accepted: 13 January 2022
Published: 10 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52172146), Natural Science Foundation of Jiangsu Province (Nos. BK20190443 and BK20200071), Shuangchuang Talent of Jiangsu Province (No. JSSCRC2021506), Young Elite Scientists Sponsorship Program by Jiangsu CAST (No. JS19TJGC132574), 2019 Overseas Students' Science and Technology Innovation Project Selection Funding of Nanjing, Fundamental Research Funds for the Central Universities (Nos. 30919011298, 30919011299 and 30919012107), National Key R&D Program of China (No. 2017YFA0305500), the National Natural Science Foundation of China (Nos. 61725402, 11604152, and 51672132), the National “ten thousand talents plan” leading talents (No. W03020394), the Six top talent innovation teams of Jiangsu Province (No. TD-XCL-004). Y. D. and Z. H. conducted all the experiments. Y. D. and X. X. wrote the manuscript. Y. Z. and H. Z. supervised this project.

Return