Journal Home > Volume 15 , Issue 6

The intermetallic synergy plays a critical role in exploring the chemical-physical properties of metal nanoclusters. However, the controlled doping or layer-by-layer alloying of atom-precise metal nanoclusters (NCs) has long been a challenging pursuit. In this work, two novel alloy nanoclusters [PPh4]4[Ag32Cu18(PFBT)36] ((AgCu)50) and [PPh4]4[Au12Ag20Cu18(PFBT)36] (Au12(AgCu)38), where PFBT is pentafluorobenzenethiolate, with shell-by-shell configuration of M12@Ag20@Cu18(PFBT)36 (M = Ag/Au) were synthesized by a facile one-pot co-reduction method. Notably, a fingerprint library of [Ag50−xCux(PFBT)36]4− (x = 0 to 50) from Ag50 to Cu50 has been successfully established as revealed by electrospray ionization mass spectrometry. Single-crystal X-ray diffraction analysis of trimetallic Au12(AgCu)38 confirmed the layer-by-layer alloying under reducing conditions. What is more, (AgCu)50 and Au12(AgCu)38 both show broad photoluminescence (PL) peak in the second near-infrared (NIR-II) window, and the Au doping in the innermost shell considerably enhances the photoluminescence intensity. This work not only offers an insight in the process of metal cluster alloying but also provides a platform to study the doping-directed PL properties in the multimetallic cluster system.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Layer-by-layer alloying of NIR-II emissive M50 (Au/Ag/Cu) superatomic nanocluster

Show Author's information Xiao-Hong Ma1Jing-Tao Jia1Peng Luo1Zhao-Yang Wang1( )Shuang-Quan Zang1( )Thomas C. W. Mak1,2
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Department of Chemistry, The Chinese University of Hong Kong, Hong Kong 999077, China

Abstract

The intermetallic synergy plays a critical role in exploring the chemical-physical properties of metal nanoclusters. However, the controlled doping or layer-by-layer alloying of atom-precise metal nanoclusters (NCs) has long been a challenging pursuit. In this work, two novel alloy nanoclusters [PPh4]4[Ag32Cu18(PFBT)36] ((AgCu)50) and [PPh4]4[Au12Ag20Cu18(PFBT)36] (Au12(AgCu)38), where PFBT is pentafluorobenzenethiolate, with shell-by-shell configuration of M12@Ag20@Cu18(PFBT)36 (M = Ag/Au) were synthesized by a facile one-pot co-reduction method. Notably, a fingerprint library of [Ag50−xCux(PFBT)36]4− (x = 0 to 50) from Ag50 to Cu50 has been successfully established as revealed by electrospray ionization mass spectrometry. Single-crystal X-ray diffraction analysis of trimetallic Au12(AgCu)38 confirmed the layer-by-layer alloying under reducing conditions. What is more, (AgCu)50 and Au12(AgCu)38 both show broad photoluminescence (PL) peak in the second near-infrared (NIR-II) window, and the Au doping in the innermost shell considerably enhances the photoluminescence intensity. This work not only offers an insight in the process of metal cluster alloying but also provides a platform to study the doping-directed PL properties in the multimetallic cluster system.

Keywords: doping, superatom, alloy nanocluster, second near infrared (NIR-II) emission

References(41)

1

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

2

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

3

Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

4

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

5

Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.

6

AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970–11975.

7

Tian, S. B.; Cao, Y. T.; Chen, T. K.; Zang, S. Q.; Xie, J. P. Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chem. Commun. 2020, 56, 1163–1174.

8

Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X. B.; Noll, B. C. Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J. Am. Chem. Soc. 2015, 137, 4610–4613.

9

Han, Z.; Zhao, X. L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z. Y.; Zang, S. Q. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020, 13, 3248–3252.

10

Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

11

Jia, T. T.; Yang, G.; Mo, S. J.; Wang, Z. Y.; Li, B. J.; Ma, W.; Guo, Y. X.; Chen, X. Y.; Zhao, X. L.; Liu, J. Q. et al. Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 2019, 13, 8320–8328.

12

Krishnadas, K. R.; Ghosh, A.; Baksi, A.; Chakraborty, I.; Natarajan, G.; Pradeep, T. Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 2016, 138, 140–148.

13

Krishnadas, K. R.; Sementa, L.; Medves, M.; Fortunelli, A.; Stener, M.; Furstenberg, A.; Longhi, G.; Bürgi, T. Chiral functionalization of an atomically precise noble metal cluster: Insights into the origin of chirality and photoluminescence. ACS Nano 2020, 14, 9687–9700.

14

Li, G. J.; Hu, W. G.; Sun, Y. N.; Xu, J. Y.; Cai, X.; Cheng, X. L.; Zhang, Y. Y.; Tang, A. C.; Liu, X.; Chen, M. Y. et al. Reactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 21135–21142.

15

Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag-S nanocluster [Ag62S13(SBut)32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678–17679.

16

Wang, Z.; Liu, J. W.; Su, H. F.; Zhao, Q. Q.; Kurmoo, M.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Chalcogens-induced Ag6Z4@Ag36 (Z = S or Se) core–shell nanoclusters: Enlarged tetrahedral core and homochiral crystallization. J. Am. Chem. Soc. 2019, 141, 17884–17890.

17

Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.

18

Zhang, S. S.; Li, Y. Z.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C.; Sun, D. Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel. Nano Res. 2021, 14, 3343–3351.

19

Kenzler, S.; Schrenk, C.; Schnepf, A. Au108S24(PPh3)16: A highly symmetric nanoscale gold cluster confirms the general concept of metalloid clusters. Angew. Chem., Int. Ed. 2017, 56, 393–396.

20

Le Guével, X.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione: A promising fluorescent label for bioimaging. Nano Res. 2012, 5, 379–387.

21

Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

22

Zhuang, S. L.; Chen, D.; Liao, L. W.; Zhao, Y.; Xia, N.; Zhang, W. H.; Wang, C. M.; Yang, J.; Wu, Z. K. Hard-sphere random close-packed Au47Cd2(TBBT)31 nanoclusters with a faradaic efficiency of up to 96% for electrocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2020, 59, 3073–3077.

23

Bootharaju, M. S.; Chang, H.; Deng, G. C.; Malola, S.; Baek, W.; Häkkinen, H.; Zheng, N. F.; Hyeon, T. Cd12Ag32(SePh)36: Non-noble metal doped silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 8422–8425.

24

Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.

25

Li, Y. W.; Cowan, M. J.; Zhou, M.; Luo, T. Y.; Song, Y. B.; Wang, H.; Rosi, N. L.; Mpourmpakis, G.; Jin, R. C. Atom-by-atom evolution of the same ligand-protected Au21, Au22, Au22Cd1, and Au24 nanocluster series. J. Am. Chem. Soc. 2020, 142, 20426–20433.

26

Song, Y. B.; Li, Y. W.; Li, H.; Ke, F.; Xiang, J.; Zhou, C. J.; Li, P.; Zhu, M. Z.; Jin, R. C. Atomically resolved Au52Cu72(SR)55 nanoalloy reveals Marks decahedron truncation and Penrose tiling surface. Nat. Commun. 2020, 11, 478.

27

Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F. et al. Doping-induced anisotropic self-assembly of silver icosahedra in [Pt2Ag23Cl7(PPh3)10] nanoclusters. J. Am. Chem. Soc. 2017, 139, 1053–1056.

28

Kang, X.; Zhu, M. Z. Transformation of atomically precise nanoclusters by ligand-exchange. Chem. Mater. 2019, 31, 9939–9969.

29

Xi, X. J.; Yang, J. S.; Wang, J. Y.; Dong, X. Y.; Zang, S. Q. New stable isomorphous Ag34 and Ag33Au nanoclusters with an open shell electronic structure. Nanoscale 2018, 10, 21013–21018.

30

Yan, J. Z.; Su, H. F.; Yang, H. Y.; Malola, S.; Lin, S. C.; Häkkinen, H.; Zheng, N. F. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2− (M = Pd, Pt) clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.

31

Chang, W. T.; Sharma, S.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu, C. W. Heteroatom-doping increases cluster nuclearity: From an [Ag20] to an [Au3Ag18] core. Chem. -Eur. J. 2018, 24, 14352–14357.

32

Khatun, E.; Chakraborty, P.; Jacob, B. R.; Paramasivam, G.; Bodiuzzaman, M.; Dar, W. A.; Pradeep, T. Intercluster reactions resulting in silver-rich trimetallic nanoclusters. Chem. Mater. 2019, 32, 611–619.

33

Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G. X.; Jiang, D. E.; Wang, Q. M. Atomically precise bimetallic Au19Cu30 nanocluster with an icosidodecahedral Cu30 shell and an alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451–9454.

34

Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]: The “golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

35

Li, Y. L.; Wang, J.; Luo, P.; Ma, X. H.; Dong, X. Y.; Wang, Z. Y.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Cu14 cluster with partial Cu(0) character: Difference in electronic structure from isostructural silver analog. Adv. Sci. 2019, 6, 1900833.

36

Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C≡CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.

37

Zhou, M.; Zhong, J.; Wang, S. X.; Guo, Q. J.; Zhu, M. Z.; Pei, Y.; Xia, A. D. Ultrafast relaxation dynamics of luminescent rod-shaped, silver-doped AgxAu25−x clusters. J. Phys. Chem. C 2015, 119, 18790–18797.

38

Zou, X. J.; Li, Y. F.; Jin, S.; Kang, X.; Wei, X.; Wang, S. X.; Meng, X. M.; Zhu, M. Z. Doping copper atoms into the nanocluster kernel: Total structure determination of [Cu30Ag61(SAdm)38S3](BPh4). J. Phys. Chem. Lett. 2020, 11, 2272–2276.

39

Kang, X.; Wei, X.; Jin, S.; Yuan, Q. Q.; Luan, X. Q.; Pei, Y.; Wang, S. X.; Zhu, M. Z.; Jin, R. C. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. Proc. Natl. Acad. Sci. USA 2019, 116, 18834–18840.

40

Yang, H. Y.; Wang, Y.; Yan, J. Z.; Chen, X.; Zhang, X.; Häkkinen, H.; Zheng, N. F. Structural evolution of atomically precise thiolated bimetallic [Au12+nCu32(SR)30+n)4− (n = 0, 2, 4, 6) nanoclusters. J. Am. Chem. Soc. 2014, 136, 7197–7200.

41

Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

File
12274_2022_4162_MOESM1_ESM.pdf (1.8 MB)
12274_2022_4162_MOESM2_ESM.cif (1.4 MB)
12274_2022_4162_MOESM3_ESM.pdf (490.7 KB)
12274_2022_4162_MOESM4_ESM.cif (1.2 MB)
12274_2022_4162_MOESM5_ESM.pdf (176.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 September 2021
Revised: 16 January 2022
Accepted: 17 January 2022
Published: 10 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 92061201, 21825106, and 21801228), the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (No. 19IRTSTHN022) and Zhengzhou University.

Return