Journal Home > Volume 15 , Issue 6

The design of stable, efficient and processable bactericidal materials represents a significant challenge for combating multidrug-resistant bacteria in a variety of engineering fields. Herein, we report a facile strategy for the preparation of hollow polymeric nanosphere (HPN)-supported imidazolium-based ionic liquids (denoted as HPN-ILs) with superior antimicrobial activities. HPN-ILs were tailored by moderate Friedel−Crafts polymerization followed by the sequential covalent bonding of imidazole and bromoalkene. The resultant HPN-ILs have uniform hollow spherical morphology, an adequate surface area, and excellent physicochemical stability. Furthermore, they are highly active against both Gram-positive and Gram-negative bacteria and exhibit typical time/dosage-dependent antibacterial activities. The rational combination of porous HPNs and antibacterial ILs to generate an all-in-one entity may open new avenues for the design and fabrication of efficient bacteriostatic agents. Moreover, HPN-ILs have good biocompatibility and can also be loaded onto diverse matrices, and thus could extend their practical bactericidal application in the potential biomedical-active field.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities

Show Author's information Yu Zhang1( )Shuwei Li4Yixin Xu1Xinyun Shi1Mingxin Zhang2Yingning Huang2Ying Liang1Yaqiong Chen1Wanli Ji1Jung Rae Kim4Wenliang Song2( )Deng-Guang Yu2( )Il Kim3( )
School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

The design of stable, efficient and processable bactericidal materials represents a significant challenge for combating multidrug-resistant bacteria in a variety of engineering fields. Herein, we report a facile strategy for the preparation of hollow polymeric nanosphere (HPN)-supported imidazolium-based ionic liquids (denoted as HPN-ILs) with superior antimicrobial activities. HPN-ILs were tailored by moderate Friedel−Crafts polymerization followed by the sequential covalent bonding of imidazole and bromoalkene. The resultant HPN-ILs have uniform hollow spherical morphology, an adequate surface area, and excellent physicochemical stability. Furthermore, they are highly active against both Gram-positive and Gram-negative bacteria and exhibit typical time/dosage-dependent antibacterial activities. The rational combination of porous HPNs and antibacterial ILs to generate an all-in-one entity may open new avenues for the design and fabrication of efficient bacteriostatic agents. Moreover, HPN-ILs have good biocompatibility and can also be loaded onto diverse matrices, and thus could extend their practical bactericidal application in the potential biomedical-active field.

Keywords: ionic liquids, hollow nanospheres, antibacterial materials, bioactive materials, porous polymers

References(86)

1

Peng, B.; Zhang, X. L.; Aarts, D. G. A. L.; Dullens, R. P. A. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nat. Nanotechnol. 2018, 13, 478–482.

2

Gonzaga, I. M. D.; Moratalla, A.; Eguiluz, K. I. B.; Salazar-Banda, G. R.; Cañizares, P.; Rodrigo, M. A.; Saez, C. Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. Chem. Eng. J. 2021, 420, 129999.

3

Wang, Z. P.; Fang, Y. S.; Zhou, X. F.; Li, Z. B.; Zhu, H. G.; Du, F. L.; Yuan, X.; Yao, Q. F.; Xie, J. P. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 2020, 13, 203–208.

4

Xu, Q. M.; Zheng, Z. Q.; Wang, B.; Mao, H. L.; Yan, F. Zinc ion coordinated poly (ionic liquid) antimicrobial membranes for wound healing. ACS Appl. Mater. Interfaces 2017, 9, 14656–14664.

5

Jun, W.; Kim, M. S.; Cho, B. K.; Millner, P. D.; Chao, K. L.; Chan, D. E. Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. J. Food Eng. 2010, 99, 314–322.

6

Mérian, T.; Goddard, J. M. Advances in nonfouling materials: Perspectives for the food industry. J. Agric. Food Chem. 2012, 60, 2943–2957.

7

Zheng, W. W.; Huang, J. Y.; Li, S. H.; Ge, M. Z.; Teng, L.; Chen, Z.; Lai, Y. K. Advanced materials with special wettability toward intelligent oily wastewater remediation. ACS Appl. Mater. Interfaces 2021, 13, 67–87.

8

Pionke, H. B.; Glotfelty, D. E. Nature and extent of groundwater contamination by pesticides in an agricultural watershed. Water Res. 1989, 23, 1031–1037.

9

Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

10

Martínez, J. L.; Baquero, F.; Andersson, D. I. Predicting antibiotic resistance. Nat. Rev. Microbiol. 2007, 5, 958–965.

11

Baym, M.; Stone, L. K.; Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 2016, 351, aad3292.

12

Zhang, S. Q.; Ye, J. W.; Sun, Y.; Kang, J.; Liu, J. H.; Wang, Y. C.; Li, Y.; Zhang, L. H.; Ning, G. L. Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chem. Eng. J. 2020, 390, 124523.

13

Ma, Z.; Wei, D. D.; Yan, P.; Zhu, X.; Shan, A. S.; Bi, Z. P. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials 2015, 52, 517–530.

14

Li, K.; Chen, J.; Xue, Y.; Ding, T. X.; Zhu, S. B.; Mao, M. T.; Zhang, L.; Han, Y. Polymer brush grafted antimicrobial peptide on hydroxyapatite nanorods for highly effective antibacterial performance. Chem. Eng. J. 2021, 423, 130133.

15

Liu, W. T.; Liu, C. D.; Liu, C.; Li, Y. Z.; Pan, L.; Wang, J. Y.; Jian, X. G. Surface chemical modification of poly (phthalazinone ether nitrile ketone) through rhBMP-2 and antimicrobial peptide conjugation for enhanced osteogenic and antibacterial activities in vitro and in vivo. Chem. Eng. J. 2021, 424, 130321.

16

Liang, H. Y.; Lu, Q. M.; Liu, M. H.; Ou, R. X.; Wang, Q. W.; Quirino, R. L.; Luo, Y.; Zhang, C. Q. UV absorption, anticorrosion, and long-term antibacterial performance of vegetable oil based cationic waterborne polyurethanes enabled by amino acids. Chem. Eng. J. 2021, 421, 127774.

17

Zhang, Y.; Song, W. L.; Li, S. W.; Kim, D. K.; Kim, J. H.; Kim, J. R.; Kim, I. Facile and scalable synthesis of topologically nanoengineered polypeptides with excellent antimicrobial activities. Chem. Commun. 2020, 56, 356–359.

18

Lai, Y. X.; Xie, C.; Zhang, Z.; Lu, W. Y.; Ding, J. D. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials 2010, 31, 4809–4817.

19

Lu, B. Y.; Zhu, G. Y.; Yu, C. H.; Chen, G. Y.; Zhang, C. L.; Zeng, X.; Chen, Q. M.; Peng, Q. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res. 2021, 14, 185–190.

20

Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.

21

Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 2010, 4, 5471–5479.

22

Cavicchioli, M.; Massabni, A. C.; Heinrich, T. A.; Costa-Neto, C. M.; Abrão, E. P.; Fonseca, B. A. L.; Castellano, E. E.; Corbi, P. P.; Lustri, W. R.; Leite, C. Q. F. Pt(II) and Ag(I) complexes with acesulfame: Crystal structure and a study of their antitumoral, antimicrobial and antiviral activities. J. Inorg. Biochem. 2010, 104, 533–540.

23

Wei, F.; Cui, X. Y.; Wang, Z.; Dong, C. C.; Li, J. D.; Han, X. J. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 2021, 408, 127240.

24

Patra, P.; Mitra, S.; Das Gupta, A.; Pradhan, S.; Bhattacharya, S.; Ahir, M.; Mukherjee, S.; Sarkar, S.; Roy, S.; Chattopadhyay, S. et al. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential. Colloids Surf. B 2015, 133, 88–98.

25

Zhao, L. Z.; Wang, H. R.; Huo, K. F.; Cui, L. Y.; Zhang, W. R.; Ni, H. W.; Zhang, Y. M.; Wu, Z. F.; Chu, P. K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011, 32, 5706–5716.

26

Zhu, Y.; Xu, J.; Wang, Y. M.; Chen, C.; Gu, H. C.; Chai, Y. M.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020, 13, 389–400.

27

Rauner, N.; Mueller, C.; Ring, S.; Boehle, S.; Strassburg, A.; Schoeneweiss, C.; Wasner, M.; Tiller, J. C. A coating that combines lotus-effect and contact-active antimicrobial properties on silicone. Adv. Funct. Mater. 2018, 28, 1801248.

28

Wei, T.; Zhan, W. J.; Yu, Q.; Chen, H. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability. ACS Appl. Mater. Interfaces 2017, 9, 25767–25774.

29

Liu, C.; Guo, Y. Q.; Wei, X. J.; Wang, C.; Qu, M. C.; Schubert, D. W.; Zhang, C. H. An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment. Chem. Eng. J. 2020, 384, 123306.

30

Qu, Y. C.; Wei, T.; Zhao, J.; Jiang, S. B.; Yang, P.; Yu, Q.; Chen, H. Regenerable smart antibacterial surfaces: Full removal of killed bacteria via a sequential degradable layer. J. Mater. Chem. B 2018, 6, 3946–3955.

31

Xu, Y.; Zhang, K. X.; Reghu, S.; Lin, Y. C.; Chan-Park, M. B.; Liu, X. W. Synthesis of antibacterial glycosylated polycaprolactones bearing imidazoliums with reduced hemolytic activity. Biomacromolecules 2019, 20, 949–958.

32

Xue, Y.; Pan, Y. F.; Xiao, H. N.; Zhao, Y. Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv. 2014, 4, 46887–46895.

33

Chang, L.; Wang, J.; Tong, C. Y.; Zhao, L.; Liu, X. M. Comparison of antimicrobial activities of polyacrylonitrile fibers modified with quaternary phosphonium salts having different alkyl chain lengths. J. Appl. Polym. Sci. 2016, 133, 43689.

34

Sundararaman, M.; Kumar, R. R.; Venkatesan, P.; Ilangovan, A. 1-Alkyl-(N,N-dimethylamino) pyridinium bromides: Inhibitory effect on virulence factors of Candida albicans and on the growth of bacterial pathogens. J. Med. Microbiol. 2013, 62, 241–248.

35

Santiago, R.; Moya, C.; Palomar, J. Siloxanes capture by ionic liquids: Solvent selection and process evaluation. Chem. Eng. J. 2020, 401, 126078.

36

Zhang, S. G.; Zhang, Q. H.; Zhang, Y.; Chen, Z. J.; Watanabe, M.; Deng, Y. Q. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog. Mater. Sci. 2016, 77, 80–124.

37

Yuan, J. Y.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036.

38

Xu, D.; Guo, J. N.; Yan, F. Porous ionic polymers: Design, synthesis, and applications. Prog. Polym. Sci. 2018, 79, 121–143.

39

Zhang, Y. W.; Yuan, B.; Zhang, Y. Q.; Cao, Q. P.; Yang, C.; Li, Y.; Zhou, J. H. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chem. Eng. J. 2020, 400, 125984.

40

Zhou, C.; Sheng, C. J.; Gao, L. L.; Guo, J.; Li, P.; Liu, B. Engineering poly(ionic liquid) semi-IPN hydrogels with fast antibacterial and anti-inflammatory properties for wound healing. Chem. Eng. J. 2021, 413, 127429.

41

Wang, M. Y.; Shi, J.; Mao, H. L.; Sun, Z.; Guo, S. Y.; Guo, J. N.; Yan, F. Fluorescent imidazolium-type poly(ionic liquid)s for bacterial imaging and biofilm inhibition. Biomacromolecules 2019, 20, 3161–3170.

42

Xue, Y.; Xiao, H. N.; Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 2015, 16, 3626–3655.

43

MacGowan, A.; Macnaughton, E. Antibiotic resistance. Medicine 2017, 45, 622–628.

44

Nederberg, F.; Zhang, Y.; Tan, J. P. K.; Xu, K. J.; Wang, H. Y.; Yang, C.; Gao, S. J.; Guo, X. D.; Fukushima, K.; Li, L. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011, 3, 409–414.

45

Wiradharma, N.; Khoe, U.; Hauser, C. A. E.; Seow, S. V.; Zhang, S. G.; Yang, Y. Y. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials 2011, 32, 2204–2212.

46

Fang, C.; Kong, L. L.; Ge, Q.; Zhang, W.; Zhou, X. J.; Zhang, L.; Wang, X. P. Antibacterial activities of N-alkyl imidazolium-based poly(ionic liquid) nanoparticles. Polym. Chem. 2019, 10, 209–218.

47

Gnichwitz, J. F.; Marczak, R.; Werner, F.; Lang, N. N.; Jux, N.; Guldi, D. M.; Peukert, W.; Hirsch, A. Efficient synthetic access to cationic dendrons and their application for ZnO nanoparticles surface functionalization: New building blocks for dye-sensitized solar cells. J. Am. Chem. Soc. 2010, 132, 17910–17920.

48

Dong, A.; Lan, S.; Huang, J. F.; Wang, T.; Zhao, T. Y.; Wang, W. W.; Xiao, L. H.; Zheng, X.; Liu, F. Q.; Gao, G. et al. Preparation of magnetically separable N-halamine nanocomposites for the improved antibacterial application. J. Colloid Interface Sci. 2011, 364, 333–340.

49

Dharman, M. M.; Choi, H. J.; Kim, D. W.; Park, D. W. Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionic liquids: Effect of variation in the silica support. Catal. Today 2011, 164, 544–547.

50

Han, L. N.; Choi, H. J.; Choi, S. J.; Liu, B. Y.; Park, D. W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem. 2011, 13, 1023–1028.

51

Zheng, X. X.; Luo, S. Z.; Zhang, L.; Cheng, J. P. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem. 2009, 11, 455–458.

52

Chen, G. J.; Zhang, Y. D.; Xu, J. Y.; Liu, X. Q.; Liu, K.; Tong, M. M.; Long, Z. Y. Imidazolium-based ionic porous hybrid polymers with POSS-derived silanols for efficient heterogeneous catalytic CO2 conversion under mild conditions. Chem. Eng. J. 2020, 381, 122765.

53

Zhang, Y. D.; Liu, K.; Wu, L.; Zhong, H.; Luo, N.; Zhu, Y. X.; Tong, M. M.; Long, Z. Y.; Chen, G. J. Silanol-enriched viologen-based ionic porous hybrid polymers for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions. ACS Sustainable Chem. Eng. 2019, 7, 16907–16916.

54
Han, L. N.; Li, H. Q.; Choi, S. J.; Park, M. S.; Lee, S. M.; Kim, Y. J.; Park, D. W. Ionic liquids grafted on carbon nanotubes as highly efficient heterogeneous catalysts for the synthesis of cyclic carbonates. Appl. Catal. A: Gen. 2012, 429–430, 67–72.https://doi.org/10.1016/j.apcata.2012.04.008
DOI
55

Kim, J.; Kim, S. N.; Jang, H. G.; Seo, G.; Ahn, W. S. CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal. A:Gen. 2013, 453, 175–180.

56
Notario, B.; Pinto, J.; Rodriguez-Perez, M. A. Nanoporous polymeric materials: A new class of materials with enhanced properties. Prog. Mater. Sci. 2016, 78−79, 93−139.https://doi.org/10.1016/j.pmatsci.2016.02.002
DOI
57

Yan, Y.; Gause, K. T.; Kamphuis, M. M. J.; Ang, C. S.; O’Brien-Simpson, N. M.; Lenzo, J. C.; Reynolds, E. C.; Nice, E. C.; Caruso, F. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 2013, 7, 10960–10970.

58

Yang, Z. F.; Han, J. X.; Jiao, R.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Porous carbon framework derived from N-rich hypercrosslinked polymer as the efficient metal-free electrocatalyst for oxygen reduction reaction. J. Colloid Interface Sci. 2019, 557, 664–672.

59

Choi, S. J.; Choi, E. H.; Song, C.; Ko, Y. J.; Lee, S. M.; Kim, H. J.; Jang, H. Y.; Son, S. U. Hyper-cross-linked polymer on the hollow conjugated microporous polymer platform: A heterogeneous catalytic system for poly(caprolactone) synthesis. ACS Macro Lett. 2019, 8, 687–693.

60

Wisser, F. M.; Grothe, J.; Kaskel, S. Nanoporous polymers as highly sensitive functional material in chemiresistive gas sensors. Sens. Actuators B:Chem. 2016, 223, 166–171.

61

Bhattacharjee, S.; Lugger, J. A. M.; Sijbesma, R. P. Tailoring pore size and chemical interior of near 1 nm sized pores in a nanoporous polymer based on a discotic liquid crystal. Macromolecules 2017, 50, 2777–2783.

62

Zhang, X.; Ong’achwa Machuki, J.; Pan, W. Z.; Cai, W. B.; Xi, Z. Q.; Shen, F. Z.; Zhang, L. J.; Yang, Y.; Gao, F. L.; Guan, M. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano 2020, 14, 4045–4060.

63

Wang, H.; Feng, E. M.; Liu, Y. M.; Zhang, C. Y. High-performance hierarchical ultrathin sheet-based CoOOH hollow nanospheres with rich oxygen vacancies for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 7777–7783.

64

Razzaque, S.; Cheng, Y.; Hussain, I.; Tan, B. Synthesis of surface functionalized hollow microporous organic capsules for doxorubicin delivery to cancer cells. Polym. Chem. 2020, 11, 2110–2118.

65

Song, W. L.; Zhang, Y.; Varyambath, A.; Kim, I. Guided assembly of well-defined hierarchical nanoporous polymers by Lewis acid-base interactions. ACS Nano 2019, 13, 11753–11769.

66

Song, W. L.; Zhang, Y.; Varyambath, A.; Kim, J. S.; Kim, I. Sulfonic acid modified hollow polymer nanospheres with tunable wall-thickness for improving biodiesel synthesis efficiency. Green Chem. 2020, 22, 3572–3583.

67

Song, W. L.; Zhang, Y.; Yu, D. G.; Tran, C. H.; Wang, M. L.; Varyambath, A.; Kim, J.; Kim, I. Efficient synthesis of folate-conjugated hollow polymeric capsules for accurate drug delivery to cancer cells. Biomacromolecules 2021, 22, 732–742.

68

Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem., Int. Ed. 2005, 44, 7053–7059.

69

Yao, C. F.; Li, H. G.; Wu, H. H.; Liu, Y. M.; Wu, P. Mesostructured polymer-supported diphenylphosphine-palladium complex: An efficient and recyclable catalyst for Heck reactions. Catal. Commun. 2009, 10, 1099–1102.

70

Zhang, W.; Wang, Q. X.; Wu, H. H.; Wu, P.; He, M. Y. A highly ordered mesoporous polymer supported imidazolium-based ionic liquid: An efficient catalyst for cycloaddition of CO2 with epoxides to produce cyclic carbonates. Green Chem. 2014, 16, 4767–4774.

71

Luo, Y. L.; Zhang, S. C.; Ma, Y. X.; Wang, W.; Tan, B. E. Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym. Chem. 2013, 4, 1126–1131.

72

Ghazali-Esfahani, S.; Song, H. B.; Păunescu, E.; Bobbink, F. D.; Liu, H. Z.; Fei, Z. F.; Laurenczy, G.; Bagherzadeh, M.; Yan, N.; Dyson, P. J. Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. Green Chem. 2013, 15, 1584–1589.

73

Ren, Y. Y.; Guo, J. N.; Lu, Q.; Xu, D.; Qin, J.; Yan, F. Polypropylene nonwoven fabric@poly(ionic liquid)s for switchable oil/water separation, dye absorption, and antibacterial applications. ChemSusChem 2018, 11, 1092–1098.

74

Pang, L. Q.; Zhong, L. J.; Zhou, H. F.; Wu, X. E.; Chen, X. D. Grafting of ionic liquids on stainless steel surface for antibacterial application. Colloids Surf. B:Biointerfaces 2015, 126, 162–168.

75

Bhunia, P.; Hwang, E.; Min, M.; Lee, J.; Seo, S.; Some, S.; Lee, H. A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem. Commun. 2012, 48, 913–915.

76

Yang, H. W.; Jiang, B.; Sun, Y. L.; Zhang, L. H.; Sun, Z. N.; Wang, J. Y.; Tantai, X. Polymeric cation and isopolyanion ionic self-assembly: Novel thin-layer mesoporous catalyst for oxidative desulfurization. Chem. Eng. J. 2017, 317, 32–41.

77

Nikfarjam, N.; Ghomi, M.; Agarwal, T.; Hassanpour, M.; Sharifi, E.; Khorsandi, D.; Ali Khan, M.; Rossi, F.; Rossetti, A.; Nazarzadeh Zare, E. et al. Antimicrobial ionic liquid-based materials for biomedical applications. Adv. Funct. Mater. 2021, 31, 2104148.

78

Fallah, Z.; Zare, E. N.; Khan, M. A.; Iftekhar, S.; Ghomi, M.; Sharifi, E.; Tajbakhsh, M.; Nikfarjam, N.; Makvandi, P.; Lichtfouse, E. et al. Ionic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anticorrosion coatings. Adv. Colloid Interface Sci. 2021, 294, 102454.

79

Zheng, Z. Q.; Xu, Q. M.; Guo, J. N.; Qin, J.; Mao, H. L.; Wang, B.; Yan, F. Structure-antibacterial activity relationships of imidazolium-type ionic liquid monomers, poly(ionic liquids) and poly(ionic liquid) membranes: Effect of alkyl chain length and cations. ACS Appl. Mater. Interfaces 2016, 8, 12684–12692.

80

Wilson, C.; Main, M. J.; Cooper, N. J.; Briggs, M. E.; Cooper, A. I.; Adams, D. J. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 2017, 8, 1914–1922.

81

Xu, Y.; Wang, T. Q.; He, Z. D.; Zhou, M. H.; Yu, W.; Shi, B. Y.; Huang, K. Organic ligands incorporated hypercrosslinked microporous organic nanotube frameworks for accelerating mass transfer in efficient heterogeneous catalysis. Appl. Catal. A: Gen. 2017, 541, 112–119.

82

Rahma, H.; Asghari, S.; Logsetty, S.; Gu, X. C.; Liu, S. Preparation of hollow N-chloramine-functionalized hemispherical silica particles with enhanced efficacy against bacteria in the presence of organic load: Synthesis, characterization, and antibacterial activity. ACS Appl. Mater. Interfaces 2015, 7, 11536–11546.

83

Qin, J.; Guo, J.; Xu, Q.; Zheng, Z.; Mao, H.; Yan, F. Synthesis of pyrrolidinium-type poly (ionic liquid) membranes for antibacterial applications. ACS Appl. Mater. Interface 2017, 12, 10504–10511.

84

Fang, H.; Wang, J. H.; Li, L.; Xu, L. Q.; Wu, Y. X.; Wang, Y.; Fei, X.; Tian, J. Li, Y. A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 2019, 365, 153–164.

85

Yu, H.; Chen, X. J.; Cai, J.; Ye, D. D.; Wu, Y. X.; Fan, L. F.; Liu. P. F. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem. Eng. J. 2019, 369, 253–262.

86

Wang, F.; Ren, F.; Ma, D.; Mu, P.; Wei, H. J.; Xiao, C. H.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Chen, J. X. et al. Particle and nanofiber shaped conjugated microporous polymers bearing hydantoin-substitution with high antibacterial activity for water cleanness. J. Mater. Chem. A 2018, 6, 266–274.

File
12274_2022_4160_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 December 2022
Revised: 10 January 2022
Accepted: 13 January 2022
Published: 16 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Shanghai Sailing Program (No. 21YF1431000). I. K. thanks to the National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. 2021R1A2C2003685) for financial support.

Return