Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The supported-metal catalysts are of great importance to the energy-related electrocatalysis, which is regarded as a green and sustainable technology to address energy and environmental issues. The metal size and metal–support interaction can significantly affect the electrocatalytic activity and stability. As a novel two-dimensional (2D) carbon allotrope comprising sp- and sp2-hybridized carbon atoms, graphdiyne (GDY) possesses uniformly distributed pores, naturally created anchoring sites, high electrical conductivity, and good stability, making it as an attractive matrix for supporting metal catalysts. Herein, this review will present a systematical summary on the synthesis of size-controlled metal catalysts from nanoparticles to single atoms anchored on GDY and their applications in energy related electrocatalysis, in which the size effect and confinement effect on electrocatalytic performance will be revealed. We first briefly introduce the emerging synthetic methods for GDY, laying a foundation for the subsequent fabrication of nano-scale GDY-supported metal catalysts. Then the corresponding electrocatalytic applications including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR), and CO2 reduction reaction (CO2RR) are elaborately discussed. This review will be helpful for understanding the effect of support-metal interaction on electrocatalytic performance and thereby designing ideal supported-metal catalysts on atomic scale.
Zhang, P.; Lou, X. W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. 2019, 31, 1900281.
Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.
Li, X.; Wang, J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat 2020, 2, 3–32.
Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.
Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.
Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.
Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.
Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.
Ren, S. S.; Duan, X. D.; Liang, S.; Zhang, M. D.; Zheng, H. G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182.
Hou, J. B.; Yang, M.; Zhang, J. L. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920.
Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971–15005.
Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.
Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.
Shao, P.; Yi, L. C.; Chen, S. M.; Zhou, T. H.; Zhang, J. Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. J. Energy Chem. 2020, 40, 156–170.
Wang, J. J.; Li, X. P.; Cui, B. F.; Zhang, Z.; Hu, X. F.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals 2021, 40, 3019–3037.
Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.
Dang. N.; Younghye, K., Yun, J. H.; Da, H. W. Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy 2020, 2, 72–98.
Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.
Wang, Q.; Ming, M.; Niu, S.; Zhang, Y.; Fan, G. Y.; Hu, J. S. Scalable solid‐state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801698.
Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select 2021, 2, 492–511.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.
Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.
Zhao, Y.; Gao, Y. X.; Chen, Z.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B:Environ. 2021, 297, 120395.
Babucci, M.; Guntida, A.; Gates, B. C. Atomically dispersed metals on well-defined supports including zeolites and metal-organic frameworks: Structure, bonding, reactivity, and catalysis. Chem. Rev. 2020, 120, 11956–11985.
Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250–1349.
Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem. Rev. 2020, 120, 12315–12341.
Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442–1476.
Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.
Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 1987, 87, 6687–6699.
Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.
Wang, N.; He, J. J.; Wang, K.; Zhao, Y. J.; Jiu, T. G.; Huang, C. S.; Li, Y. L. Graphdiyne-based materials: Preparation and application for electrochemical energy storage. Adv. Mater. 2019, 31, 1803202.
Cao, S. W.; Wang, Y. J.; Zhu, B. C.; Xie, G. C.; Yu, J. G.; Gong, J. R. Enhanced photochemical CO2 reduction in the gas phase by graphdiyne. J. Mater. Chem. A 2020, 8, 7671–7676.
Shen, H.; He, J. Y.; He, F.; Xue, Y. R.; Li, Y. J.; Li, Y. L. Nitrogen-doped graphdiyne for effective metal deposition and heterogeneous Suzuki–Miyaura coupling catalysis. Appl. Catal. A:Gen. 2021, 623, 118244.
Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z. Q.; Chai, G. L.; Löffler, M.; Olianas, D.; Milani, A.; Xu, S. Q.; Tommasini, M. et al. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 2018, 9, 1140.
Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.
Huang, C. S.; Li, Y. L. Structure of 2D graphdiyne and its application in energy fields. Acta Phys. -Chim. Sin. 2016, 32, 1314–1329.
Li, J.; Gao, X.; Zhu, L.; Ghazzal, M. N.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy Environ. Sci. 2020, 13, 1326–1346.
Liu, X.; Wang, Z. X.; Tian, Y.; Zhao, J. X. Graphdiyne-supported single iron atom: A promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. J. Phys. Chem. C 2020, 124, 3722–3730.
Ma, J. P.; Wu, S.; Yuan, Y.; Mao, H.; Lee, J. Y.; Kang, B. T. Graphyne-anchored single Fe atoms as efficient CO oxidation catalysts as predicted by DFT calculations. Phys. Chem. Chem. Phys. 2020, 22, 6004–6009.
Lv, Q.; Si, W. Y.; Yang, Z.; Wang, N.; Tu, Z. Y.; Yi, Y. P.; Huang, C. S.; Jiang, L.; Zhang, M. J.; He, J. J. et al. Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 29744–29752.
Feng, Z.; Tang, Y. N.; Ma, Y. Q.; Li, Y.; Dai, Y. W.; Ding, H.; Su, G.; Dai, X. Q. Theoretical investigation of CO2 electroreduction on N (B)-doped graphdiyne mononlayer supported single copper atom. Appl. Surf. Sci. 2021, 538, 148145.
Hui, L.; Jia, D. Z.; Yu, H. D.; Xue, Y. R.; Li, Y. L. Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting. ACS Appl. Mater. Interfaces 2019, 11, 2618–2625.
Lv, Q.; Si, W. Y.; He, J. J.; Sun, L.; Zhang, C. F.; Wang, N.; Yang, Z.; Li, X. D.; Wang, X.; Deng, W. Q. et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376.
Yao, Y.; Zhu, Y. H.; Pan, C. Q.; Wang, C. Y.; Hu, S. Y.; Xiao, W.; Chi, X.; Fang, Y. R.; Yang, J.; Deng, H. T. et al. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 8720–8730.
Gao, Y.; Xue, Y. R.; Liu, T. F.; Liu, Y. X.; Zhang, C.; Xing, C. Y.; He, F.; Li, Y. L. Bimetallic mixed clusters highly loaded on porous 2D graphdiyne for hydrogen energy conversion. Adv. Sci. 2021, 8, 2102777.
Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q. et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem., Int. Ed. 2020, 59, 13021–13027.
Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.
He, J. J.; Wang, N.; Cui, Z. L.; Du, H. P.; Fu, L.; Huang, C. S.; Yang, Z.; Shen, X. Y.; Yi, Y. P.; Tu, Z. Y. et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 2017, 8, 1172.
He, J. J.; Wang, N.; Yang, Z.; Shen, X. Y.; Wang, K.; Huang, C. S.; Yi, Y. P.; Tu, Z. Y.; Li, Y. L. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy Environ. Sci. 2018, 11, 2893–2903.
Lu, T. T.; He, J. J.; Li, R.; Wang, K.; Yang, Z.; Shen, X. Y.; Li, Y.; Xiao, J. C.; Huang, C. S. Adjusting the interface structure of graphdiyne by H and F co-doping for enhanced capacity and stability in Li-ion battery. Energy Stor. Mater. 2020, 29, 131–139.
Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Yi, Y. P.; Li, Y. L. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem., Int. Ed. 2018, 130, 4032–4037.
Wang, N.; He, J. J.; Tu, Z. Y.; Yang, Z.; Zhao, F. H.; Li, X. D.; Huang, C. S.; Wang, K.; Jiu, T. G.; Yi, Y. P. et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage. Angew. Chem., Int. Ed. 2017, 56, 10740–10745.
Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.
Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145–3152.
Lv, Q.; Wang, N.; Si, W. Y.; Hou, Z. F.; Li, X. D.; Wang, X.; Zhao, F. H.; Yang, Z.; Zhang, Y. L.; Huang, C. S. Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B:Environ. 2020, 261, 118234.
Yang, Z.; Shen, X. Y.; Wang, N.; He, J. J.; Li, X. D.; Wang, X.; Hou, Z. F.; Wang, K.; Gao, J.; Jiu, T. G. et al. Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion. ACS Appl. Mater. Interfaces 2019, 11, 2608–2617.
Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.
Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.
Li, J. Q.; Zhong, L. X.; Tong, L. M.; Yu, Y.; Liu, Q.; Zhang, S. C.; Yin, C.; Qiao, L.; Li, S. Z.; Si, R. et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423.
Gu, H. L.; Zhong, L. X.; Shi, G. S.; Li, J. Q.; Yu, K.; Li, J.; Zhang, S.; Zhu, C. Y.; Chen, S. H.; Yang, C. L. et al. Graphdiyne/graphene heterostructure: A universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 8679–8688.
Yin, C.; Li, J. Q.; Li, T. R.; Yu, Y.; Kong, Y.; Gao, P.; Peng, H. L.; Tong, L. M.; Zhang, J. Catalyst‐free synthesis of few‐layer graphdiyne using a microwave‐induced temperature gradient at a solid/liquid interface. Adv. Funct. Mater. 2020, 30, 2001396.
Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 2011, 115, 2611–2615.
Gao, X.; Ren, H. Y.; Zhou, J. Y.; Du, R.; Yin, C.; Liu, R.; Peng, H. L.; Tong, L. M.; Liu, Z. F.; Zhang, J. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem. Mater. 2017, 29, 5777–5781.
Zuo, Z. C.; Shang, H.; Chen, Y. H.; Li, J. F.; Liu, H. B.; Li, Y. J.; Li, Y. L. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 2017, 53, 8074–8077.
Kong, Y.; Li, J. Q.; Zeng, S.; Yin, C.; Tong, L. M.; Zhang, J. Bridging the gap between reality and ideality of graphdiyne: The advances of synthetic methodology. Chem 2020, 6, 1933–1951.
Rong, W. F.; Zou, H. Y.; Zang, W. J.; Xi, S. B.; Wei, S. T.; Long, B. H.; Hu, J. H.; Ji, Y. F.; Duan, L. L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 466–472.
Wang, J. J.; Wang, H. J.; Zhang, C.; Gong, Y. N.; Bai, Y. L.; Lu, T. B. Graphdiyne enables Cu nanoparticles for highly selective electroreduction of CO2 to formate. 2D Mater. 2021, 8, 044008.
Si, W. Y,; Yang, Z.; Hu, X. L.; Lv, Q.; Li, X. D.; Zhao, F. H.; He, J. J.; Huang, C. S. Preparation of zero valence Pd nanoparticles with ultra-efficient electrocatalytic activity for ORR. J. Mater. Chem. A 2021, 9, 14507–14514.
Zou, H. Y.; Rong, W. F.; Wei, S. T.; Ji, Y. F.; Duan, L. L. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc. Natl. Acad. Sci. USA 2020, 117, 29462–29468.
Guo, Y.; Liu, J. W.; Yang, Q.; Ma, L. T.; Zhao, Y. W.; Huang, Z. D.; Li, X. L.; Dong, B. B.; Fu, X. Z.; Zhi, C. Y. Metal-tuned acetylene linkages in hydrogen substituted graphdiyne boosting the electrochemical oxygen reduction. Small 2020, 16, 1907341.
Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.
Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.
Yu, H. D.; Xue, Y. R.; Huang, B. L.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Zhao, Y. J.; Li, Y. J.; Liu, H. B. et al. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production. iScience 2019, 11, 31–41.
Yu, H. D.; Hui, L.; Xue, Y. R.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Chen, X.; Du, Y. C. et al. 2D graphdiyne loading ruthenium atoms for high efficiency water splitting. Nano Energy 2020, 72, 104667.
Si, W. Y.; Yang, Z.; Wang, X.; Lv, Q.; Zhao, F. H.; Li, X. D.; He, J. J.; Long, Y. Z.; Gao, J.; Huang, C. S. Fe, N‐codoped graphdiyne displaying efficient oxygen reduction reaction activity. ChemSusChem 2019, 12, 173–178.
Wang, X.; Yang, Z.; Si, W. Y.; Shen, X. Y.; Li, X. D.; Li, R.; Lv, Q.; Wang, N.; Huang, C. S. Cobalt-nitrogen-doped graphdiyne as an efficient bifunctional catalyst for oxygen reduction and hydrogen evolution reactions. Carbon 2019, 147, 9–18.
Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 2017, 7, 5209–5213.
Xue, Y. R.; Li, J. F.; Xue, Z.; Li, Y. J.; Liu, H. B.; Li, D.; Yang, W. S.; Li, Y. L. Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH. ACS Appl. Mater. Interfaces 2016, 8, 31083–31091.
Xie, W. J.; Zhang, S. F.; Ni, Y. X.; Shi, G. D.; Li, J. J.; Fu, X. L.; Chen, X. J.; Yuan, M. J.; Wang, M. Graphdiyne-stabilized silver nanoparticles as an efficient electrocatalyst for CO2 reduction. Adv. Energy Sustain. Res. 2021, 2, 2100037.
Shi, G. D.; Xie, Y. L.; Du, L. L.; Fan, Z. X.; Chen, X. J.; Fu, X. L.; Xie, W. J.; Wang, M.; Yuan, M. J. Stabilization of cobalt clusters with graphdiyne enabling efficient overall water splitting. Nano Energy 2020, 74, 104852.
Lv, Y.; Wu, X. Y.; Lin, H.; Li, J. X.; Zhang, H. B.; Guo, J. X.; Jia, D. Z.; Zhang, H. M. A novel carbon support: Few-layered graphdiyne-decorated carbon nanotubes capture metal clusters as effective metal-supported catalysts. Small 2021, 17, 2006442.
Gao, Y.; Cai, Z. W.; Wu, X. C.; Lv, Z. L.; Wu, P.; Cai, C. X. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 2018, 8, 10364–10374.
Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.
Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.
Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Chen, X.; Zhang, D. Y.; Huang, B. L.; Li, Y. L. Graphdiyne-based metal atomic catalysts for synthesizing ammonia. Natl. Sci. Rev. 2021, 8, nwaa213.
Ma, D. W.; Li, T. X.; Wang, Q. G.; Yang, G.; He, C. Z.; Ma, B. Y.; Lu, Z. S. Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 2015, 95, 756–765.
Qian, X. D.; Zheng, Y. S.; Chen, S. H.; Xu, J. L. Atomic-level functionalized graphdiyne for electrocatalysis applications. Catalysts 2020, 10, 929.
Wang, Z. Q.; Qi, L.; Zheng, Z. Q.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: A rising star on the horizon of energy conversion. Chem. Asian J. 2021, 16, 3259–3271.
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
Hu, C. Y.; Ma, Q. Y.; Hung, S. F.; Chen, Z. N.; Ou, D. H.; Ren, B.; Chen, H. M.; Fu, G.; Zheng, N. F. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis. Chem 2017, 3, 122–133.
Ye, R. Q.; Liu, Y. Y.; Peng, Z. W.; Wang, T.; Jalilov, A. S.; Yakobson, B. I.; Wei, S. H.; Tour, J. M. High performance electrocatalytic reaction of hydrogen and oxygen on ruthenium nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 3785–3791.
Asefa, T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc. Chem. Res. 2016, 49, 1873–1883.
Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, e1806326.
Xue, Y. R.; Hui, L.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Huang, B. L.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Rationally engineered active sites for efficient and durable hydrogen generation. Nat. Commun. 2019, 10, 2281.
Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.
Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.
Cui, M.; Hu, T. T.; Chen, L. L.; Li, P.; Gong, Y. H.; Wu, Z. X.; Wang, S. Recent progress in graphdiyne for electrocatalytic reactions. ChemElectroChem 2020, 7, 4843–4852.
Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.
He, T. W.; Matta, S. K.; Will, G.; Du, A. J. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods 2019, 3, 1800419.
Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.
Tang, S. F.; Lu, X. L.; Zhang, C.; Wei, Z. W.; Si, R.; Lu, T. B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull. 2021, 66, 1533–1541.
Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.
Mukherjee, S.; Devaguptapu, S. V.; Sviripa, A.; Lund, C. R. F.; Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B:Environ. 2018, 226, 162–181.
Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.