Journal Home > Volume 15 , Issue 6

With a rapid development of intelligent transportation systems (ITSs), traffic monitoring has gained increasing attention. Here, we present a new kind of waterbomb-origami-inspired triboelectric nanogenerator (WO-TENG) as a traffic monitoring system to integrate smart pavement with lightweight, cost-effective, excellent deformability, flexibility, and self-rebounding properties. The electrical performance is significantly improved by more than 67% compared with current origami-based TENG, and multi tribo-pairs have great synchronicity. The fully-packaged self-driven WO-TENG is further developed to integrate smart pavement, which can successfully decouple the influence of vehicle speed and weight on the sensing accuracy. This phenomenon demonstrates the feasibility and stability of the WO-TENG for traffic monitoring. Independently of the voltage amplitude and time interval electrical wave, vehicle speed, number of vehicles, and types of vehicles can be further evaluated accurately. This work can not only address the challenge of traditional traffic monitoring system, but also promote the development of TENG based self-powered sensors in ITSs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring

Show Author's information Yafeng Pang1Xingyi Zhu1( )Ying Yu2Shuainian Liu3Yu Chen4Yi Feng4
Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
School of Mechanical Engineering, Tongji University, Shanghai 200092, China
College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China

Abstract

With a rapid development of intelligent transportation systems (ITSs), traffic monitoring has gained increasing attention. Here, we present a new kind of waterbomb-origami-inspired triboelectric nanogenerator (WO-TENG) as a traffic monitoring system to integrate smart pavement with lightweight, cost-effective, excellent deformability, flexibility, and self-rebounding properties. The electrical performance is significantly improved by more than 67% compared with current origami-based TENG, and multi tribo-pairs have great synchronicity. The fully-packaged self-driven WO-TENG is further developed to integrate smart pavement, which can successfully decouple the influence of vehicle speed and weight on the sensing accuracy. This phenomenon demonstrates the feasibility and stability of the WO-TENG for traffic monitoring. Independently of the voltage amplitude and time interval electrical wave, vehicle speed, number of vehicles, and types of vehicles can be further evaluated accurately. This work can not only address the challenge of traditional traffic monitoring system, but also promote the development of TENG based self-powered sensors in ITSs.

Keywords: triboelectric nanogenerator, waterbomb-origami, smart pavement, traffic monitoring

References(45)

1

Won, M. Intelligent traffic monitoring systems for vehicle classification: A survey. IEEE Access 2020, 8, 73340–73358.

2

Chen, C. J.; Ota, K.; Dong, M.; Yu, C.; Jin, H. WITM: Intelligent traffic monitoring using fine-grained wireless signal. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 206–215.

3

Pan, S. L.; Li, P.; Yi, C. S.; Zeng, D. Z.; Liang, Y. C.; Hu, G. M. Edge intelligence empowered urban traffic monitoring: A network tomography perspective. IEEE Trans. Intell. Transport. Syst. 2021, 22, 2198–2211.

4

Zhu, F. H.; Lv, Y. S.; Chen, Y. Y.; Wang, X.; Xiong, G.; Wang, F. Y. Parallel transportation systems: Toward IoT-enabled smart urban traffic control and management. IEEE Trans. Intell. Transport. Syst. 2020, 21, 4063–4071.

5

Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.

6

Wang, J.; Zhang, H. L.; Xie, Y. H.; Yan, Z. C.; Yuan, Y.; Huang, L.; Cui, X. J.; Gao, M.; Su, Y. J.; Yang, W. Q. et al. Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing. Nano Energy 2017, 33, 418–426.

7

Yu, H.; He, X.; Ding, W. B.; Hu, Y. S.; Yang, D. C.; Lu, S.; Wu, C. S.; Zou, H. Y.; Liu, R. Y.; Lu, C. H. et al. A self-powered dynamic displacement monitoring system based on triboelectric accelerometer. Adv. Energy Mater. 2017, 7, 1700565.

8

Wen, J.; Chen, B.; Tang, W.; Jiang, T.; Zhu, L.; Xu, L.; Chen, J.; Shao, J.; Han, K.; Ma, W. et al. Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv. Energy Mater. 2018, 8, 1801898.

9

Jin, L.; Deng, W.; Su, Y.; Xu, Z.; Meng, H.; Wang, B.; Zhang, H.; Zhang, B.; Zhang, L.; Xiao, X. et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 2017, 38, 185–192.

10

Jin, L.; Zhang, B.; Zhang, L.; Yang, W. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy. 2019, 66, 104086.

11

Feng, M. Q; Leung, R. Y. Application of computer vision for estimation of moving vehicle weight. IEEE Sens. J. 2021, 21, 11588–11597.

12

Zhang, Z.; Huang, Y.; Bridgelall, R.; Al-Tarawneh, M.; Lu, P. Optimal system design for weigh-in-motion measurements using in-pavement strain sensors. IEEE Sens. J. 2017, 17, 7677–7684.

13

Yu, Y.; Cai, C. S.; Deng, L. State-of-the-art review on bridge weigh-in-motion technology. Adv. Struct. Eng. 2016, 19, 1514–1530.

14

Wang, S.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

15

Zhu, Z. H.; Deng, W.; Li, W.; Chun, F. J.; Luo, C.; Xie, M. L.; Pu, B.; Lin, N.; Gao, B.; Yang, W. Q. Antisolvent-induced fastly grown all-inorganic perovskite CsPbCl3 microcrystal films for high-sensitive UV photodetectors. ADV Mater. Interfaces 2021, 8, 2001812.

16

Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.

17

Jin, L.; Ma, S. Y.; Deng, W. L.; Yan, C.; Yang, T.; Chu, X.; Tian, G.; Xiong, D.; Lu, J.; Yang, W. Q. Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 2018, 50, 632–638.

18

Zhu, G.; Yang, W. Q.; Zhang, T.; Jing, Q.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

19

Luo, J.; Fan, F. R.; Zhou, T.; Tang, W.; Xue, F.; Wang, Z. L. Ultrasensitive self-powered pressure sensing system. Extrem. Mech. Lett. 2015, 2, 28–36.

20

Schenk, M.; Guest, S. D. Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. USA 2013, 110, 3276–3281.

21

Ma, J. Y.; Feng, H. J.; Chen, Y.; Hou, D. G.; You, Z. Folding of tubular waterbomb. Research 2020, 2020, 1735081.

22

Chen, Y.; Feng, H. J.; Ma, J. Y.; Peng, R.; You, Z. Symmetric waterbomb origami. Proc. Math. Phys. Eng. Sci. 2016, 472, 20150846.

23

Zirbel, S. A.; Lang, R. J.; Thomson, M. W.; Sigel, D. A.; Walkemeyer, P. E.; Trease, B. P.; Magleby, S. P.; Howell, L. L. Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 2013, 135, 111005.

24

Wu, R.; Roberts, P. C. E.; Soutis, C.; Diver, C. Heliogyro solar sail with self-regulated centrifugal deployment enabled by an origami-inspired morphing reflector. Acta Astronaut. 2018, 152, 242–253.

25

Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q.; Chen, J.; Zhang, G.; Ma, J.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano. 2013, 7, 3713–3719.

26

Feng, Y. G.; Zheng, Y. B.; Rahman, Z. U.; Wang, D. A.; Zhou, F.; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022–18030.

27

Xia, K.; Zhang, H.; Zhu, Z.; Xu, Z. Folding triboelectric nanogenerator on paper based on conductive ink and teflon tape. Sens. Actuat. A Phys. 2018, 272, 28–32.

28

Hu, Q.; Wang, B.; Zhong, Q.; Zhong, J.; Hu, B.; Zhang, X.; Zhou, J. Metal-free and non-fluorine paper-based generator. Nano Energy 2015, 14, 236–244.

29

Guo, H.; Yeh, M. H.; Zi, Y.; Wen, Z.; Chen, J.; Liu, G.; Hu, C.; Wang, Z. L. Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 2017, 11, 4475–4482.

30

Wu, C.; Wang, X.; Lin, L.; Guo, H.; Wang, Z. L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 2016, 10, 4652–4659.

31

Yang, P. K.; Lin, Z. H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J. H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.

32

Tao, K.; Yi, H.; Yang, Y.; Chang, H.; Wu, J.; Tang, L.; Yang, Z.; Wang, N.; Hu, L.; Fu, Y. et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 2020, 67, 104197.

33

Tao, K.; Yi, H. P.; Yang, Y.; Tang, L. H.; Yang, Z. S.; Wu, J.; Chang, H. L.; Yuan, W. Z. Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability. Microsyst. Nanoeng. 2020, 6, 56.

34

Zhang, H.; Yang, C.; Yu, Y.; Zhou, Y.; Quan, L.; Dong, S.; Luo, J. Origami-tessellation-based triboelectric nanogenerator for energy harvesting with application in road pavement. Nano Energy. 2020, 78, 105177.

35

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

36

Chen, J.; Guo, H.; Liu, G.; Wang, X.; Xi, Y.; Javed, M. S.; Hu, C. A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems. Nano Energy 2017, 33, 508–514.

37

Askari, H.; Saadatnia, Z.; Khajepour, A.; Khamesee, M. B.; Zu, J. A triboelectric self-powered sensor for tire condition monitoring: Concept, design, fabrication, and experiments. Adv. Eng. Mater. 2017, 19, 1700318.

38

Zhu, G.; Pan, C.; Guo, W.; Chen, C. Y.; Zhou, Y.; Yu, R.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

39

Wang, S.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

40

Chen, J.; Zhu, G.; Yang, W.; Jing, Q.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

41

Chen, J.; Yang, J.; Li, Z.; Fan, X.; Zi, Y.; Jing, Q.; Guo, H.; Wen, Z.; Pradel, K. C.; Niu, S. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

42

Xiao, T. X.; Liang, X.; Jiang, T.; Xu, L.; Shao, J. J.; Nie, J. H.; Bai, Y.; Zhong, W.; Wang, Z. L. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 2018, 28, 1802634.

43

Yang, W.; Chen, J.; Jing, Q.; Yang, J.; Wen, X.; Su, Y.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

44

Xie, X. K.; Wen, Z.; Shen, Q. Q.; Chen, C.; Peng, M. F.; Yang, Y. Q.; Sun, N.; Cheng, P.; Shao, H. Y.; Zhang, Y. et al. Impedance matching effect between a triboelectric nanogenerator and a piezoresistive pressure sensor induced self-powered weighing. Adv. Mater. Technol. 2018, 3, 1800054.

45

Qian, J.; Kim, D. S.; Lee, D. W. On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring. Nano Energy 2018, 49, 126–136.

Video
12274_4152_ESM1.mp4
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2021
Revised: 09 January 2022
Accepted: 11 January 2022
Published: 17 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work described in this paper is supported by the National Natural Science Foundation of China (Nos. 51922079 and 61911530160), Key Research Project from Shanxi Transportation Holdings Group (No. 19-JKKJ-1), the Fund of Science and Technology Commission of Shanghai Municipality (No. 20DZ2251900), and the Fundamental Research Funds for the Central Universities.

Return