Journal Home > Volume 15 , Issue 6

Green hydrogen (H2) is an import energy carrier due to the zero-carbon emission in the energy cycle. Nevertheless, green H2 production based on electrolyzer and photovoltaics (EZ/PV) remains limited due to the highly pH-dependant and energy exhausting overall water splitting. Herein, we report a series of Ru-nanocluster-modified mesoporous nanospheres (Rux@mONC) as pH-universal electrocatalysts towards both hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR). The optimal catalyst Ru20@mONC realizes remarkable catalytic activity and stability towards both HER and HzOR regardless of electrolytes. As a result, the electrode pair of Ru20@mONC//Ru20@mONC requires low cell-potentials of 39/429, 405/926, and 164/1,141 mV to achieve the current density of 10/100 mA·cm−2, as well as the long-term stability for HzOR assisted electrochemical water splitting in alkaline, acidic, and neutral media, respectively. Those performances are more promising compared to the state-of-the-art electrocatalysts so far reported. A proof-of-concept test demonstrates an efficient production of green H2 powered by a single-junction silicon solar cell, which may inspire the use of a cost-effective EZ/PV system. Furthermore, a combined spectroscopic and theoretical study verifies the formation of abundant Ru/NC heterointerfaces in Ru20@mONC, which not only contributes to the balancing of H* adsorption/desorption in HER but also facilitates the *N2H2 dehydrogenation in HzOR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ru/NC heterointerfaces boost energy-efficient production of green H2 over a wide pH range

Show Author's information Qifeng Yang1,§Botao Zhu1,§Feng Wang1,§Cunjin Zhang2Jiahao Cai1Peng Jin2( )Lai Feng1( )
Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou 215006, China
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China

§ Qifeng Yang, Botao Zhu, and Feng Wang contributed equally to this work.

Abstract

Green hydrogen (H2) is an import energy carrier due to the zero-carbon emission in the energy cycle. Nevertheless, green H2 production based on electrolyzer and photovoltaics (EZ/PV) remains limited due to the highly pH-dependant and energy exhausting overall water splitting. Herein, we report a series of Ru-nanocluster-modified mesoporous nanospheres (Rux@mONC) as pH-universal electrocatalysts towards both hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR). The optimal catalyst Ru20@mONC realizes remarkable catalytic activity and stability towards both HER and HzOR regardless of electrolytes. As a result, the electrode pair of Ru20@mONC//Ru20@mONC requires low cell-potentials of 39/429, 405/926, and 164/1,141 mV to achieve the current density of 10/100 mA·cm−2, as well as the long-term stability for HzOR assisted electrochemical water splitting in alkaline, acidic, and neutral media, respectively. Those performances are more promising compared to the state-of-the-art electrocatalysts so far reported. A proof-of-concept test demonstrates an efficient production of green H2 powered by a single-junction silicon solar cell, which may inspire the use of a cost-effective EZ/PV system. Furthermore, a combined spectroscopic and theoretical study verifies the formation of abundant Ru/NC heterointerfaces in Ru20@mONC, which not only contributes to the balancing of H* adsorption/desorption in HER but also facilitates the *N2H2 dehydrogenation in HzOR.

Keywords: dehydrogenation, heterointerface, hydrazine oxidation, energy-efficient hydrogen production, photovoltaics-electrochemistry coupling

References(48)

1

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

2

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

3

Yang, Q. F.; Zhang, C. J.; Dong, B.; Cui, Y. C.; Wang, F.; Cai, J. H.; Jin, P.; Feng, L. Synergistic modulation of nanostructure and active sites: Ternary Ru&Fe-WOx electrocatalyst for boosting concurrent generations of hydrogen and formate over 500 mA·cm−2. Appl. Catal. B: Environ. 2021, 296, 120359.

4

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

5

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

6

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

7

Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

8

Wang, T. Z.; Wang, Q.; Wang, Y. C.; Da, Y. L.; Zhou, W.; Shao, Y.; Li, D. H.; Zhan, S. H.; Yuan, J. Y.; Wang, H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew. Chem., Int. Ed. 2019, 58, 13466–13471.

9

Zhang, J. Y.; Wang, H. M.; Tian, Y. F.; Yan, Y.; Xue, Q.; He, T.; Liu, H. F.; Wang, C. D.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem., Int. Ed. 2018, 57, 7649–7653.

10

Zhao, Y.; Jia, N.; Wu, X. R.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. W.; Chen, Y. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Appl. Catal. B: Environ. 2020, 270, 118880.

11

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

12

Davis, W. E.; Li, Y. T. Analysis of hydrazine in drinking water by isotope dilution gas chromatography/tandem mass spectrometry with derivatization and liquid-liquid extraction. Anal. Chem. 2008, 80, 5449–5453.

13

Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Hübscher, R.; Lange, C.; Weber, N. Thermal neutron radiography of a passive proton exchange membrane fuel cell for portable hydrogen energy systems. J. Power Sources 2020, 480, 228668.

14

Xue, Q.; Huang, H.; Zhu, J. Y.; Zhao, Y.; Li, F. M.; Chen, P.; Chen, Y. Au@Rh core-shell nanowires for hydrazine electrooxidation. Appl. Catal. B: Environ. 2020, 278, 119269.

15

Zhang, J. H.; Liu, Y.; Li, J. M.; Jin, X.; Li, Y. P.; Qian, Q. Z.; Wang, Y. X.; El-Harairy, A.; Li, Z. Y.; Zhu, Y. et al. Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation. ACS Appl. Mater. Interfaces 2021, 13, 3881–3890.

16

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Guo, Y. M.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Hierarchical multi-component nanosheet array electrode with abundant NiCo/MoNi4 heterostructure interfaces enables superior bifunctionality towards hydrazine oxidation assisted energy-saving hydrogen generation. Chem. Eng. J. 2021, 414, 128818.

17

Shen, F.; Wang, Z. L.; Wang, Y. M.; Qian, G. F.; Pan, M. J.; Luo, L.; Chen, G. N.; Wei, H. L.; Yin, S. B. Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Res. 2021, 14, 4356–4361.

18

Zhang, C. X.; Liu, H. X.; Liu, Y. F.; Liu, X. J.; Mi, Y. Y.; Guo, R. J.; Sun, J. Q.; Bao, H. H.; He, J.; Qiu, Y. et al. Rh2S3/N-Doped carbon hybrids as pH-universal bifunctional electrocatalysts for energy-saving hydrogen evolution. Small Methods 2020, 4, 2000208.

19

Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.

20

Yang, Q. F.; Cui, Y. C.; Li, Q. Y.; Cai, J. H.; Wang, D.; Feng, L. Nanosheet-derived ultrafine CoRuOx@NC nanoparticles with a Core@Shell structure as bifunctional electrocatalysts for electrochemical water splitting with high current density or low power input. ACS Sustainable Chem. Eng. 2020, 8, 12089–12099.

21

Yang, Q. F.; Jin, P.; Liu, B.; Zhao, L.; Cai, J. H.; Wei, Z.; Zuo, S. W.; Zhang, J.; Feng, L. Ultrafine carbon encapsulated NiRu alloys as bifunctional electrocatalysts for boosting overall water splitting: Morphological and electronic modulation through minor Ru alloying. J. Mater. Chem. A 2020, 8, 9049–9057.

22

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

23

Feng, Q.; Wang, Q.; Zhang, Z.; Xiong, Y. Y. H.; Li, H. Y.; Yao, Y.; Yuan, X. Z.; Williams, M. C.; Gu, M.; Chen, H. et al. Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis. Appl. Catal. B: Environ. 2019, 244, 494–501.

24

Zhang, N.; Wang, C.; Chen, J. W.; Hu, C. Y.; Ma, J.; Deng, X.; Qiu, B. C.; Cai, L. J.; Xiong, Y. J.; Chai, Y. Metal substitution steering electron correlations in pyrochlore ruthenates for efficient acidic water oxidation. ACS Nano 2021, 15, 8537–8548.

25

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

26

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

27

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

28

Wu, X. K.; Wang, Z. C.; Zhang, D.; Qin, Y. N.; Wang, M. H.; Han, Y.; Zhan, T. R.; Yang, B.; Li, S. X.; Lai, J. P. et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

29

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

30

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

31

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

32

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

33

Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

34

Chen, G. Z.; Wang, R. Y.; Zhao, W.; Kang, B. T.; Gao, D. W.; Li, C. C.; Lee, J. Y. Effect of Ru crystal phase on the catalytic activity of hydrolytic dehydrogenation of ammonia borane. J. Power Sources 2018, 396, 148–154.

35

Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

36

Li, T. J.; Lin, H. F.; Ouyang, X. P.; Qiu, X. Q.; Wan, Z. C. In situ preparation of Ru@N-doped carbon catalyst for the hydrogenolysis of lignin to produce aromatic monomers. ACS Catal. 2019, 9, 5828–5836.

37

Salomäki, M.; Ouvinen, T.; Marttila, L.; Kivelä, H.; Leiro, J.; Mäkilä, E.; Lukkari, J. Polydopamine nanoparticles prepared using redox-active transition metals. J. Phys. Chem. B 2019, 123, 2513–2524.

38

Zhao, R.; Liang, Z. B.; Gao, S.; Yang, C.; Zhu, B. J.; Zhao, J. L.; Qu, C.; Zou, R. Q.; Xu, Q. Puffing up energetic metal–organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew. Chem., Int. Ed. 2019, 58, 1975–1979.

39

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

40

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

41

Fan, M. M.; Jimenez, J. D.; Shirodkar, S. N.; Wu, J. J.; Chen, S. M.; Song, L.; Royko, M. M.; Zhang, J. J.; Guo, H.; Cui, J. W. et al. Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation. ACS Catal. 2019, 9, 10077–10086.

42

Fujiwara, K.; Kitamura, M.; Shiga, D.; Niwa, Y.; Horiba, K.; Nojima, T.; Ohta, H.; Kumigashira, H.; Tsukazaki, A. Insulator-to-metal transition of Cr2O3 thin films via isovalent Ru3+ substitution. Chem. Mater. 2020, 32, 5272–5279.

43

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

44

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

45

Tian, S. B.; Wang, Z. Y.; Gong, W. B.; Chen, W. X.; Feng, Q. C.; Xu, Q.; Chen, C.; Chen, C.; Peng, Q.; Gu, L. et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161–11164.

46

Khaselev, O.; Turner J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425–427.

47
Pagliaro, M.; Konstandopoulos, A. G. Hydrogen and solar hydrogen. In Solar Hydrogen: Fuel of the Future. Pagliaro, M.; Konstandopoulos, A. G., Eds.; RSC Publishing: Cambridge, 2012.
48

Bhattacharyya, R.; Misra, A.; Sandeep, K. C. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: Conceptual design and analysis. Energy Convers. Manage. 2017, 133, 1–13.

Video
12274_2022_4148_MOESM2_ESM.mp4
File
12274_2022_4148_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 October 2021
Revised: 10 January 2022
Accepted: 11 January 2022
Published: 28 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is supported in part by the Natural Science Foundation of China (No. 52172050), Natural Science Research Project of Jiangsu Higher Education Institutions (No. 21KJA480002), six talent peaks project in Jiangsu province (No. XCL-078), the National Key Research, and Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies. L. F. also thanks Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics of the Chinese Academy of Sciences, for XANES measurements.

Return