Journal Home > Volume 15 , Issue 11

As a direct-bandgap semiconductor, single-layer MoS2 has gained great attention in optoelectronics, especially wearable photodetectors. However, MoS2 exhibits poor photoresponsivity on a stretchable substrate due to intrinsic low carrier density and a large number of scattering centers on polymer substrates. Few air-stable yet strong dopants on MoS2 has been reported. In addition, the roughness, hydrophobicity and susceptibility to organic solvents of polymer surface are critical roadblocks in the development of stretchable high-performance MoS2 photodetectors. Here, we realize a stretchable and stable photodetector with high photoresponsivity by combining n-type dopant ((4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl) phenyl) dimethylamine, N-DMBI) with MoS2 and assembly transfer technique. It is found electron tends to transfer from N-DMBI to MoS2 and the effect is maintained after the integrable photodetector transferred directly by elastic substrate styrene-ethylene-butylene-styrene (SEBS), even after being exposed to the air for 20 days, which benifits greatly from the encapsulation of SEBS. The increased carrier density greatly promotes carrier injection efficiency and photogenerated electron–hole separation efficiency at the metal–semiconductor interface, thus offering a significantly improved photoresponsivity in MoS2 photodetectors. Moreover, such photodetector shows great durability to stretch, which can remain functional after stretched 100 cycles within its stretch limit. Our strategy opens a new avenue to fabricate high-photoresponsivity stretchable electronics or optoelectronics of two-dimensional (2D) materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

N-doped MoS2 via assembly transfer on an elastomeric substrate for high-photoresponsivity, air-stable and stretchable photodetector

Show Author's information Shuyan Qi1,§Weifeng Zhang1,§Xiaoli Wang1Yifan Ding2Yan Zhang1Jiakang Qiu1Ting Lei3Run Long1Nan Liu1( )
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

§ Shuyan Qi and Weifeng Zhang contributed equally to this work.

Abstract

As a direct-bandgap semiconductor, single-layer MoS2 has gained great attention in optoelectronics, especially wearable photodetectors. However, MoS2 exhibits poor photoresponsivity on a stretchable substrate due to intrinsic low carrier density and a large number of scattering centers on polymer substrates. Few air-stable yet strong dopants on MoS2 has been reported. In addition, the roughness, hydrophobicity and susceptibility to organic solvents of polymer surface are critical roadblocks in the development of stretchable high-performance MoS2 photodetectors. Here, we realize a stretchable and stable photodetector with high photoresponsivity by combining n-type dopant ((4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl) phenyl) dimethylamine, N-DMBI) with MoS2 and assembly transfer technique. It is found electron tends to transfer from N-DMBI to MoS2 and the effect is maintained after the integrable photodetector transferred directly by elastic substrate styrene-ethylene-butylene-styrene (SEBS), even after being exposed to the air for 20 days, which benifits greatly from the encapsulation of SEBS. The increased carrier density greatly promotes carrier injection efficiency and photogenerated electron–hole separation efficiency at the metal–semiconductor interface, thus offering a significantly improved photoresponsivity in MoS2 photodetectors. Moreover, such photodetector shows great durability to stretch, which can remain functional after stretched 100 cycles within its stretch limit. Our strategy opens a new avenue to fabricate high-photoresponsivity stretchable electronics or optoelectronics of two-dimensional (2D) materials.

Keywords: charge transfer, transition metal dichalcogenides, stretchable photodetectors, organic molecules

References(65)

[1]

Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753.

[2]

Kim, J.; Kim, J.; Jo, S.; Kang, J. G.; Jo, J. W.; Lee, M.; Moon, J.; Yang, L.; Kim, M. G.; Kim, Y. H. et al. Ultrahigh detective heterogeneous photosensor arrays with In-pixel signal boosting capability for large-area and skin-compatible electronics. Adv. Mater. 2016, 28, 3078–3086.

[3]

Koppelhuber, A.; Bimber, O. LumiConSense: A transparent, flexible, and scalable thin-film sensor. IEEE Comput. Graph. Appl. 2014, 34, 98–102.

[4]

Lee, M. E.; Armani, A. M. Flexible UV exposure sensor based on UV responsive polymer. ACS Sens. 2016, 1, 1251–1255.

[5]

Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

[6]

Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

[7]

Wang, S. H; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. N. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033–1045.

[8]

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

[9]

Zhang, W. F.; Zhang, Y.; Qiu, J. K.; Zhao, Z. H.; Liu, N. Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InfoMat 2021, 3, 133–154.

[10]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[11]

Choi, C.; Choi, M. K.; Liu, S. Y.; Kim, M. S.; Park, O. K.; Im, C.; Kim, J.; Qin, X. L, ; Lee, G. J.; Cho, K. W. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.

[12]

De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.

[13]

Pak, S.; Jang, A. R.; Lee, J.; Hong, J.; Giraud, P.; Lee, S.; Cho, Y.; An, G. H.; Lee, Y. W.; Shin, H. S. et al. Surface functionalization-induced photoresponse characteristics of monolayer MoS2 for fast flexible photodetectors. Nanoscale 2019, 11, 4726–4734.

[14]

Sun, B.; Shi, T. L.; Liu, Z. Y.; Wu, Y. N.; Zhou, J. X.; Liao, G. L. Large-area flexible photodetector based on atomically thin MoS2/graphene film. Mater. Des. 2018, 154, 1–7.

[15]

Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

[16]

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

[17]

Huang, Y.; Zhuge, F.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062–4073.

[18]

Zhao, Y. D.; Bertolazzi, S.; Samorì, P. A universal approach toward light-responsive two-dimensional electronics: Chemically tailored hybrid van der Waals heterostructures. ACS Nano 2019, 13, 4814–4825.

[19]

Ji, H. G.; Solís-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.

[20]

Guo, R.; Li, Q.; Zheng, Y.; Lei, B.; Sun, H. C.; Hu, Z. H.; Zhang, J. L.; Wang, L.; Longhi, E.; Barlow, S. et al. Degenerate electron-doping in two-dimensional tungsten diselenide with a dimeric organometallic reductant. Mater. Today 2019, 30, 26–33.

[21]

Sun, J. C.; Wang, Y. Y.; Guo, S. Q.; Wan, B. S.; Dong, L. Q.; Gu, Y. D.; Song, C.; Pan, C. F.; Zhang, Q. H.; Gu, L. et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.

[22]

Zhu, X. Q.; Zhang, M. T.; Yu, A.; Wang, C. H.; Cheng, J. P. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile. J. Am. Chem. Soc. 2008, 130, 2501–2516.

[23]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[24]

Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

[25]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[26]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[27]

Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

[28]

Zeng, Y.; Zheng, W. Y.; Guo, Y.; Han, G. C.; Yi, Y. P. Doping mechanisms of N-DMBI-H for organic thermoelectrics: Hydrogen removal vs. hydride transfer. J. Mater. Chem. A 2020, 8, 8323–8328.

[29]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[30]

Wei, P.; Oh, J. H.; Dong, G. F.; Bao, Z. N. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 2010, 132, 8852–8853.

[31]

Kwon, S. J.; Han, T. H.; Kim, Y. H.; Ahmed, T.; Seo, H. K.; Kim, H.; Kim, D. J.; Xu, W. T.; Hong, B. H.; Zhu, J. X. et al. Solution-processed n-type graphene doping for cathode in inverted polymer light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 4874–4881.

[32]

Chee, S. S.; Lee, W. J.; Jo, Y. R.; Cho, M. K.; Chun, D.; Baik, H.; Kim, B. J.; Yoon, M. H.; Lee, K.; Ham, M. H. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv. Funct. Mater. 2020, 30, 1908147.

[33]

Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

[34]

Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.

[35]

Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Hight Walker, A. R.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1802991.

[36]

Mak, K. F.; He, K. L.; Lee, C. G.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

[37]

Heo, K.; Jo, S. H.; Shim, J.; Kang, D. H.; Kim, J. H.; Park, J. H. Stable and reversible triphenylphosphine-based n-type doping technique for molybdenum disulfide (MoS2). ACS Appl. Mater. Interfaces 2018, 10, 32765–32772.

[38]

Lien, D. H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager III, J. W.; Yablonovitch, E.; Javey, A. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468–471.

[39]

Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175–1181.

[40]

Tsai, M. Y.; Tarasov, A.; Hesabi, Z. R.; Taghinejad, H.; Campbell, P. M.; Joiner, C. A.; Adibi, A.; Vogel, E. M. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 2015, 7, 12850–12855.

[41]

Salvatore, G. A.; Münzenrieder, N.; Barraud, C.; Petti, L.; Zysset, C.; Büthe, L.; Ensslin, K.; Tröster, G. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 2013, 7, 8809–8815.

[42]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[43]

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

[44]

Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H. et al. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107.

[45]

Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030.

[46]

Kim, R. H.; Leem, J.; Muratore, C.; Nam, S.; Rao, R.; Jawaid, A.; Durstock, M.; Mcconney, M.; Drummy, L.; Rai, R. et al. Photonic crystallization of two-dimensional MoS2 for stretchable photodetectors. Nanoscale 2019, 11, 13260–13268.

[47]

Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

[48]

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

[49]

Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165–6170.

[50]

Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

[51]

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

[52]

Prades, J. D.; Hernandez-Ramirez, F.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Morante, J. R. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology 2008, 19, 465501.

[53]

Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325.

[54]

Kang, P.; Wang, M. C.; Knapp, P. M.; Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 2016, 28, 4639–4645.

[55]

Mu, J. K.; Hou, C. Y.; Wang, G.; Wang, X. M.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Zhu, M. F. An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors. Adv. Mater. 2016, 28, 9491–9497.

[56]

Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H. I.; Liao, Y. M.; Inbaraj, C. R. P.; Liou, Y. R.; Kataria, M.; Lu, K. L. et al. Trapped photons induced ultrahigh external quantum efficiency and photoresponsivity in hybrid graphene/metal-organic framework broadband wearable photodetectors. Adv. Funct. Mater. 2018, 28, 1804802.

[57]

Lan, C. Y.; Zhou, Z. Y.; Zhou, Z. F.; Li, C.; Shu, L.; Shen, L. F.; Li, D. P.; Dong, R. T.; Yip, S.; Ho, J, C. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 2018, 11, 3371–3384.

[58]

Kim, B. H.; Yoon, H.; Kwon, S. H.; Kim, D. W.; Yoon, Y. J. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum 2021, 184, 109950.

[59]

Bao, Y. X.; Han, J. F.; Li, H. X.; Huang, K. Flexible, heat-resistant photodetector based on MoS2 nanosheets thin film on transparent muscovite mica substrate. Nanotechnology 2021, 32, 025206.

[60]

Ma, Y. F.; Liu, D.; Hao, J. X.; Wang, L.; Wang, W. High-performance flexible WSe2 flake photodetector with broadband detection capability. AIP Adv. 2020, 10, 125027.

[61]

Pradhan, N. R.; Garcia, C.; Holleman, J.; Rhodes, D.; Parker, C.; Talapatra, S.; Terrones, M.; Balicas, L.; McGill, S. A. Photoconductivity of few-layered p-WSe2 phototransistors via multi-terminal measurements. 2D Mater. 2016, 3, 041004.

[62]

Lei, Y.; Luo, J.; Yang, X. G.; Cai, T.; Qi, R. J.; Gu, L. Y.; Zheng, Z. Thermal evaporation of large-area SnS2 thin films with a UV-to-NIR photoelectric response for flexible photodetector applications. ACS Appl. Mater. Interfaces 2020, 12, 24940–24950.

[63]

Han, J. F.; Li, J. Y.; Liu, W. L.; Li, H. X.; Fan, X. Y.; Huang, K. A novel flexible broadband photodetector based on flower-like MoS2 microspheres. Optics Commun. 2020, 473, 125931.

[64]

Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.

[65]

Schneider, D. S.; Grundmann, A.; Bablich, A.; Passi, V.; Kataria, S.; Kalisch, H.; Heuken, M.; Vescan, A.; Neumaier, D.; Lemme, M. C. Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics 2020, 7, 1388–1395.

File
12274_2022_4146_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 October 2021
Revised: 07 January 2022
Accepted: 11 January 2022
Published: 27 February 2022
Issue date: November 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21903007 and 22072006), Young Thousand Talents Program (No. 110532103), Beijing Normal University Startup funding (No. 312232102), Beijing Municipal Science & Technology Commission (No. Z191100000819002) and the Fundamental Research Funds for the Central Universities (No. 310421109). The authors also thank Prof. Liying Jiao from Tsinghua University for fruitful discussions and Prof. Hailin Peng and Prof. Yanfeng Zhang from Peking University for technical support.

Return