Journal Home > Volume 15 , Issue 6

Carbon-free hydrogen as a promising clean energy source can be produced with electrocatalysts via water electrolysis. Oxygen evolution reaction (OER) as anodic reaction determines the overall efficiency of water electrolysis due to sluggish OER kinetics. Thus, it’s much desirable to explore the efficient and earth-abundant transition-metal-based OER electrocatalysts with high current density and superior stability for industrial alkaline electrolyzers. Herein, we demonstrate a significant enhancement of OER kinetics with the hybrid electrocatalyst arrays in alkaline via judiciously combining earth-abundant and ultrathin NiCo-based layered double hydroxide (NiCo LDH) nanosheets with nickel cobalt sulfides (NiCoS) with a facile metal-organic framework (MOF)-template-involved surface sulfidation process. The obtained NiCo LDH/NiCoS hybrid arrays exhibits an extremely low OER overpotential of 308 mV at 100 mA·cm−2, 378 mV at 200 mA·cm−2 and 472 mV at 400 mA·cm−2 in 1 M KOH solution, respectively. A much low Tafel slope of 48 mV·dec−1 can be achieved. Meanwhile, with the current density from 50 to 250 mA·cm−2, the NiCo-LDH/NiCoS hybrid arrays can run for 25 h without any degradation. Our results demonstrate that the construction of hybrid arrays with abundant interfaces of NiCo LDH/NiCoS can facilitate OER kinetics via possible modulation of binding energy of O-containing intermediates in alkaline media. The present work would pave the way for the development of low-cost and efficient OER catalysts and industrial application of water alkaline electrolyzers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction

Show Author's information Jiahui Li1Lili Wang1( )Haojia He2Yiquan Chen2Zirui Gao3Na Ma4Bing Wang1Linlin Zheng1Rulin Li1Yujia Wei1Junqing Xu5Yao Xu3Bowen Cheng4Zhen Yin4( )Ding Ma3( )
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
China Tianchen Engineering Corporation, Tianjin 300400, China

Abstract

Carbon-free hydrogen as a promising clean energy source can be produced with electrocatalysts via water electrolysis. Oxygen evolution reaction (OER) as anodic reaction determines the overall efficiency of water electrolysis due to sluggish OER kinetics. Thus, it’s much desirable to explore the efficient and earth-abundant transition-metal-based OER electrocatalysts with high current density and superior stability for industrial alkaline electrolyzers. Herein, we demonstrate a significant enhancement of OER kinetics with the hybrid electrocatalyst arrays in alkaline via judiciously combining earth-abundant and ultrathin NiCo-based layered double hydroxide (NiCo LDH) nanosheets with nickel cobalt sulfides (NiCoS) with a facile metal-organic framework (MOF)-template-involved surface sulfidation process. The obtained NiCo LDH/NiCoS hybrid arrays exhibits an extremely low OER overpotential of 308 mV at 100 mA·cm−2, 378 mV at 200 mA·cm−2 and 472 mV at 400 mA·cm−2 in 1 M KOH solution, respectively. A much low Tafel slope of 48 mV·dec−1 can be achieved. Meanwhile, with the current density from 50 to 250 mA·cm−2, the NiCo-LDH/NiCoS hybrid arrays can run for 25 h without any degradation. Our results demonstrate that the construction of hybrid arrays with abundant interfaces of NiCo LDH/NiCoS can facilitate OER kinetics via possible modulation of binding energy of O-containing intermediates in alkaline media. The present work would pave the way for the development of low-cost and efficient OER catalysts and industrial application of water alkaline electrolyzers.

Keywords: oxygen evolution reaction, layered double hydroxide, ultrathin nanosheet, hybrid structure, surface sulfidation, interface of NiCo LDH/NiCoS

References(59)

1

Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

2

Duan, J. J.; Zhang, R. L.; Feng, J. J.; Zhang, L.; Zhang, Q. L.; Wang, A. J. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 581, 774–782.

3

Wang, H. P.; Zhu, S.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291–298.

4

Chen, J. M. Carbon neutrality: Toward a sustainable future. Innovation 2021, 2, 100127.

5

Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

6

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

7
Xu, B. Y.; Zhang, Y.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis. Acta Phys. -Chim. Sin. 2021, 37, 2009074.https://doi.org/10.3866/PKU.WHXB202009074
DOI
8

Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting. J. Energy Chem. 2021, 58, 237–246.

9

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

10

Zhuang, Q.; Ma, N.; Yin, Z. H.; Yang, X.; Yin, Z.; Gao, J.; Xu, Y.; Gao, Z. R.; Wang, H.; Kang, J. L. et al. Rich surface oxygen vacancies of MnO2 for enhancing electrocatalytic oxygen reduction and oxygen evolution reactions. Adv. Energy Sustainability Res. 2021, 2, 2100030.

11

Liu, J. L.; Zhu, D. D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732.

12

Zhao, Z. H.; Schipper, D. E.; Leitner, A. P.; Thirumalai, H.; Chen, J. H.; Xie, L. X.; Qin, F.; Alam, M. K.; Grabow, L. C.; Chen, S. et al. Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. Nano Energy 2017, 39, 444–453.

13

Li, H.; Li, F.; Yu, J. G.; Cao, S. W. 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst for enhanced CO2 photoreduction. Acta Phys. -Chim. Sin. 2021, 37, 2010073.

14

Lu, X. Y.; Xue, H. R.; Gong, H.; Bai, M. J.; Tang, D. M.; Ma, R. Z.; Sasaki, T. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett. 2020, 12, 86.

15

Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

16

Yu, C.; Liu, Z. B.; Han, X. T.; Huang, H. W.; Zhao, C. T.; Yang, J.; Qiu, J. S. NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon 2016, 110, 1–7.

17

Duan, C. P.; Wang, L. L.; Liu, J. P.; Qu, Y. N.; Gao, J.; Yang, Y. Y.; Wang, B.; Li, J. H.; Zheng, L. L.; Li, M. Z. et al. 3D carbon electrode with hierarchical nanostructure based on NiCoP core-layered double hydroxide shell for supercapacitors and hydrogen evolution. ChemElectroChem 2021, 8, 2272–2281.

18

Li, J. H.; Wang, L. L.; Yang, Y. Y.; Wang, B.; Duan, C. P.; Zheng, L. L.; Li, R. L.; Wei, Y. J.; Xu, J. Q.; Yin, Z. Rationally designed NiMn LDH@NiCo2O4 core-shell structures for high energy density supercapacitor and enzyme-free glucose sensor. Nanotechnology 2021, 32, 505710.

19

Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

20

Lin, J. H.; Yan, Y. T.; Xu, T. X.; Qu, C. Q.; Li, J.; Cao, J.; Feng, J. C.; Qi, J. L. S doped NiCo2O4 nanosheet arrays by Ar plasma: An efficient and bifunctional electrode for overall water splitting. J. Colloid Interface Sci. 2020, 560, 34–39.

21

Chauhan, M.; Reddy, K. P.; Gopinath, C. S.; Deka, S. Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal. 2017, 7, 5871–5879.

22

Li, S. Z.; Liu, J. Y.; Duan, S.; Wang, T. Y.; Li, Q. Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chin. J. Catal. 2020, 41, 847–852.

23

Manjunatha, C.; Srinivasa, N.; Chaitra, S. K.; Sudeep, M.; Kumar, R. C.; Ashoka, S. Controlled synthesis of nickel sulfide polymorphs: Studies on the effect of morphology and crystal structure on OER performance. Mater. Today Energy 2020, 16, 100414.

24

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

25

Xu, H. J.; Cao, J.; Shan, C. F.; Wang, B. K.; Xi, P. X.; Liu, W. S.; Tang, Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 8654–8658.

26

Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

27

Yin, Z.; Zheng, Y. M.; Wang, H.; Li, J. X.; Zhu, Q. J.; Wang, Y.; Ma, N.; Hu, G.; He, B. Q.; Knop-Gericke, A. et al. Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: Toward an advanced electrocatalyst for alcohol oxidation. ACS Nano 2017, 11, 12365–12377.

28

Huang, H. W.; Zhou, S.; Yu, C.; Huang, H. L.; Zhao, J. J.; Dai, L. M.; Qiu, J. S. Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy Environ. Sci. 2020, 13, 545–553.

29

Wang, L. L.; Yang, Y. Y.; Wang, B.; Duan, C. P.; Li, J. H.; Zheng, L. L.; Li, J. H.; Yin, Z. Bifunctional three-dimensional self-supporting multistage structure CC@MOF-74(NiO)@NiCo LDH electrode for supercapacitors and non-enzymatic glucose sensors. J. Alloys Compd. 2021, 885, 160899.

30

Qin, C. L.; Fan, A. X.; Ren, D. H.; Luan, C. L.; Yang, J. T.; Liu, Y. J.; Zhang, X.; Dai, X. P.; Wang, M. L. Amorphous NiMS (M: Co, Fe or Mn) holey nanosheets derived from crystal phase transition for enhanced oxygen evolution in water splitting. Electrochim. Acta 2019, 323, 134756.

31

Wang, X. H.; Huang, F. F.; Rong, F.; He, P.; Que, R. H.; Jiang, S. P. Unique MOF-derived hierarchical MnO2 nanotubes@NiCo-LDH/CoS2 nanocage materials as high performance supercapacitors. J. Mater. Chem. A 2019, 7, 12018–12028.

32

Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

33

Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.

34

Yu, J.; Lv, C. X.; Zhao, L.; Zhang, L. X.; Wang, Z. H.; Liu, Q. Y. Reverse microemulsion-assisted synthesis of NiCo2S4 nanoflakes supported on nickel foam for electrochemical overall water splitting. Adv. Mater. Interfaces 2018, 5, 1701396.

35

Zhang, L.; Peng, J. H.; Yuan, Y.; Zhang, W.; Peng, K. Bifunctional heterostructure NiCo-layered double hydroxide nanosheets/NiCoP nanotubes/Ni foam for overall water splitting. Appl. Surf. Sci. 2021, 557, 149831.

36

Chu, B. X.; Ma, Q. X.; Li, Z. S.; Li, B. L.; Huang, F. R.; Pang, Q.; Chen, Y. B.; Li, B.; Zhang, J. Z. Design and preparation of three-dimensional hetero-electrocatalysts of NiCo-layered double hydroxide nanosheets incorporated with silver nanoclusters for enhanced oxygen evolution reactions. Nanoscale 2021, 13, 11150–11160.

37

Xiang, K.; Guo, J.; Xu, J.; Qu, T. T.; Zhang, Y.; Chen, S. Y.; Hao, P. P.; Li, M. H.; Xie, M. J.; Guo, X. F. et al. Surface sulfurization of NiCo-layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis. ACS Appl. Energy Mater. 2018, 1, 4040–4049.

38

Ning, Y. Y.; Ma, D. D.; Shen, Y.; Wang, F. M.; Zhang, X. B. Constructing hierarchical mushroom-like bifunctional NiCo/NiCo2S4@NiCo/Ni foam electrocatalysts for efficient overall water splitting in alkaline media. Electrochim. Acta 2018, 265, 19–31.

39

Yan, K. L.; Shang, X.; Li, Z.; Dong, B.; Chi, J. Q.; Liu, Y. R.; Gao, W. K.; Chai, Y. M.; Liu, C. G. Facile synthesis of binary NiCoS nanorods supported on nickel foam as efficient electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 17129–17135.

40

Sun, Z. M.; Lin, L.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Amorphous boron oxide coated NiCo layered double hydroxide nanoarrays for highly efficient oxygen evolution reaction. ACS Sustainable Chem. Eng. 2018, 6, 14257–14263.

41

Wu, X. Q.; Lee, H.; Liu, H. Z.; Lu, L. J.; Wu, X. J.; Sun, L. C. NiCo/Ni/CuO nanosheets/nanowires on copper foam as an efficient and durable electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 21354–21363.

42

Yan, J. G.; Chen, L. G.; Liang, X. Co9S8 nanowires@NiCo LDH nanosheets arrays on nickel foams towards efficient overall water splitting. Sci. Bull. 2019, 64, 158–165.

43

Cao, Y.; Wang, T.; Li, X.; Zhang, L. C.; Luo, Y. L.; Zhang, F.; Asiri, A. M.; Hu, J. M.; Liu, Q.; Sun, X. P. A hierarchical CuO@NiCo layered double hydroxide core-shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg. Chem. Front. 2021, 8, 3049–3054.

44

Zhang, J. Y.; Bai, X. W.; Wang, T. T.; Xiao, W.; Xi, P. X.; Wang, J. L.; Gao, D. Q.; Wang, J. Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 2019, 11, 2.

45

Li, J. T.; Chu, D.; Dong, H.; Baker, D. R.; Jiang, R. Z. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 2020, 142, 50–54.

46

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

47

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

48

Zhang, X. Y.; Li, J.; Yang, Y.; Zhang, S.; Zhu, H. S.; Zhu, X. Q.; Xing, H. H.; Zhang, Y. L.; Huang, B. L.; Guo, S. J. et al. Co3O4/Fe0.33Co0.66P interface nanowire for enhancing water oxidation catalysis at high current density. Adv. Mater. 2018, 30, 1803551.

49

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

50

Li, Y. Z.; Li, S. W.; Hu, J.; Zhang, Y. Y.; Du, Y. C.; Han, X. J.; Liu, X.; Xu, P. Hollow FeCo-FeCoP@C nanocubes embedded in nitrogen-doped carbon nanocages for efficient overall water splitting. J. Energy Chem. 2021, 53, 1–8.

51

Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

52

Mabayoje, O.; Shoola, A.; Wygant, B. R.; Mullins, C. B. The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as "pre-catalysts". ACS Energy Lett. 2016, 1, 195–201.

53

Liu, Y. X.; Bai, Y.; Yang, W. W.; Ma, J. H.; Sun, K. N. Self-supported electrode of NiCo-LDH/NiCo2S4/CC with enhanced performance for oxygen evolution reaction and hydrogen evolution reaction. Electrochim. Acta 2021, 367, 137534.

54

Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

55

Xue, Z. Q.; Li, X.; Liu, Q. L.; Cai, M. K.; Liu, K.; Liu, M.; Ke, Z. F.; Liu, X. L.; Li, G. Q. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1900430.

56

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

57

Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; van Aken, P. A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247.

58

Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

59

Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Energy Mater. 2019, 29, 1808367.

File
12274_2022_4144_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 December 2021
Revised: 03 January 2022
Accepted: 09 January 2022
Published: 10 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 51908408 and 21872104), the Natural Science Foundation of Tianjin for Distinguished Young Scholar (No. 20JCJQJC00150) and Innovative Research Team of Tianjin Municipal Education Commission (No. TD13-5008). D. M. acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.

Return