Journal Home > Volume 15 , Issue 6

Three-dimensional (3D) printed re-entrant micropillars have demonstrated high static contact angles for an unprecedented variety of liquids, but have yet to achieve this with low contact angle hysteresis and excellent abrasion resistance. We report on the demonstration of 3D printed microcell/nanoparticle structures that exhibit high static contact angle, low contact angle hysteresis, and high mechanical durability. Micropillars and microcells both exhibit high static contact angles with water and ethylene glycol (EG), but suffer from high contact angle hysteresis, indicative of rose petal wetting. Our modeling results indicate that micropillars are able to achieve higher static contact angle and breakthrough pressure simultaneously compared with microcells. However, simulations also indicate that micropillars have higher maximum equivalent stress at their bases, so that they are more prone to mechanical failure. We address contact angle hysteresis and mechanical durability issues by the creation of 3D printed microcell/nanoparticle arrays that demonstrate super-repellency and retain their super-repellency after 100 cycles of mechanical abrasion with a Scotch-Brite abrasive pad under a pressure of 1.2 kPa. The use of interconnected microcell structures as opposed to micropillars addresses mechanical durability issues. Low contact angle hysteresis is realized by coating 3D printed structures with low surface energy nanoparticles, which lowers the solid–liquid contact area fraction. Our results demonstrate new 3D printed structures with mechanical durability and super-repellency through the use of microcell structures integrated with fluorinated nanoparticles.


menu
Abstract
Full text
Outline
About this article

Mechanically durable, super-repellent 3D printed microcell/nanoparticle surfaces

Show Author's information Sajad Haghanifar1Anthony J Galante1Mehdi Zarei2Jun Chen3Susheng Tan3Paul W Leu1,2,4( )
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
Department of Electrical and Computer Engineering and Peterson Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

Abstract

Three-dimensional (3D) printed re-entrant micropillars have demonstrated high static contact angles for an unprecedented variety of liquids, but have yet to achieve this with low contact angle hysteresis and excellent abrasion resistance. We report on the demonstration of 3D printed microcell/nanoparticle structures that exhibit high static contact angle, low contact angle hysteresis, and high mechanical durability. Micropillars and microcells both exhibit high static contact angles with water and ethylene glycol (EG), but suffer from high contact angle hysteresis, indicative of rose petal wetting. Our modeling results indicate that micropillars are able to achieve higher static contact angle and breakthrough pressure simultaneously compared with microcells. However, simulations also indicate that micropillars have higher maximum equivalent stress at their bases, so that they are more prone to mechanical failure. We address contact angle hysteresis and mechanical durability issues by the creation of 3D printed microcell/nanoparticle arrays that demonstrate super-repellency and retain their super-repellency after 100 cycles of mechanical abrasion with a Scotch-Brite abrasive pad under a pressure of 1.2 kPa. The use of interconnected microcell structures as opposed to micropillars addresses mechanical durability issues. Low contact angle hysteresis is realized by coating 3D printed structures with low surface energy nanoparticles, which lowers the solid–liquid contact area fraction. Our results demonstrate new 3D printed structures with mechanical durability and super-repellency through the use of microcell structures integrated with fluorinated nanoparticles.

Keywords: three-dimensional (3D) printing, superomniphobicity, surface evolver, mechanical durability, microcell, re-entrant, micropillar

References(52)

1

Haghanifar, S.; Lu, P.; Kayes, M. I.; Tan, S. S.; Kim, K. J.; Gao, T.; Ohodnicki, P.; Leu, P. W. Self-cleaning, high transmission, near unity haze OTS/silica nanostructured glass. J. Mater. Chem. C. 2018, 6, 9191–9199.

2

Nanda, D.; Varshney, P.; Satapathy, M.; Mohapatra, S. S.; Kumar, A. Self-assembled monolayer of functionalized silica microparticles for self-cleaning applications. Colloids Surf. Physicochem. Eng. Asp. 2017, 529, 231–238.

3

Mahadik, S. A.; Kavale, M. S.; Mukherjee, S. K.; Rao, A. V. Transparent superhydrophobic silica coatings on glass by sol-gel method. Appl. Surf. Sci. 2010, 257, 333–339.

4

Haghanifar, S.; McCourt, M.; Cheng, B. L.; Wuenschell, J.; Ohodnicki, P.; Leu, P. W. Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization. Mater. Horiz. 2019, 6, 1632–1642.

5

Wilke, K. L.; Preston, D. J.; Lu, Z. M.; Wang, E. N. Toward condensation-resistant omniphobic surfaces. ACS Nano 2018, 12, 11013–11021.

6

Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C. T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663.

7

Haghanifar, S.; Tomasovic, L. M.; Galante, A. J.; Pekker, D.; Leu, P. W. Stain-resistant, superomniphobic flexible optical plastics based on nano-enoki mushrooms. J. Mater. Chem. A 2019, 7, 15698–15706.

8

Wang, N.; Xiong, D. S.; Pan, S.; Wang, K.; Shi, Y.; Deng, Y. L. Robust superhydrophobic coating and the anti-icing properties of its lubricants-infused-composite surface under condensing condition. New J. Chem. 2017, 41, 1846–1853.

9

Meuler, A. J.; McKinley, G. H.; Cohen, R. E. Exploiting topographical texture to impart icephobicity. ACS Nano 2010, 4, 7048–7052.

10

Kayes, M. I.; Galante, A. J.; Stella, N. A.; Haghanifar, S.; Shanks, R. M. Q.; Leu, P. W. Stable lotus leaf-inspired hierarchical, fluorinated polypropylene surfaces for reduced bacterial adhesion. React. Funct. Polym. 2018, 128, 40–46.

11

Galante, A. J.; Haghanifar, S.; Romanowski, E. G.; Shanks, R. M. Q.; Leu, P. W. Superhemophobic and antivirofouling coating for mechanically durable and wash-stable medical textiles. ACS Appl. Mater. Interfaces 2020, 12, 22120–22128.

12

Haghanifar, S.; Galante, A. J.; Leu, P. W. Challenges and prospects of bio-inspired and multifunctional transparent substrates and barrier layers for optoelectronics. ACS Nano 2020, 14, 16241–16265.

13

Ragesh, P.; Ganesh, V. A.; Nair, S. V.; Nair, A. S. A review on ‘self-cleaning and multifunctional materials’. J. Mater. Chem. A 2014, 2, 14773–14797.

14

Pan, S. J.; Kota, A. K.; Mabry, J. M.; Tuteja, A. Superomniphobic surfaces for effective chemical shielding. J. Am. Chem. Soc. 2013, 135, 578–581.

15

Choi, W.; Tuteja, A.; Chhatre, S.; Mabry, J. M.; Cohen, R. E.; McKinley, G. H. Fabrics with tunable oleophobicity. Adv. Mater. 2009, 21, 2190–2195.

16

Ahuja, A.; Taylor, J. A.; Lifton, V.; Sidorenko, A. A.; Salamon, T. R.; Lobaton, E. J.; Kolodner, P.; Krupenkin, T. N. Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 2008, 24, 9–14.

17

Kota, A. K.; Li, Y. X.; Mabry, J. M.; Tuteja, A. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Adv. Mater. 2012, 24, 5838–5843.

18

Tuteja, A.; Choi, W.; Ma, M. L.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622.

19

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

20

Marmur, A. From hygrophilic to superhygrophobic: Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 2008, 24, 7573–7579.

21

Chu, Z. L.; Seeger, S. Superamphiphobic surfaces. Chem. Soc. Rev. 2014, 43, 2784–2798.

22

Sahoo, B.; Yoon, K.; Seo, J.; Lee, T. Chemical and physical pathways for fabricating flexible superamphiphobic surfaces with high transparency. Coatings 2018, 8, 47.

23

Im, Y.; Joshi, Y.; Dietz, C.; Lee, S. S. Enhanced boiling of a dielectric liquid on copper nanowire surfaces. Int. J. Micro-Nano Scale Transp. 2010, 1, 79–96.

24

Choi, J.; Jo, W.; Lee, S. Y.; Jung, Y. S.; Kim, S. H.; Kim, H. T. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano 2017, 11, 7821–7828.

25

Liu, X. J.; Gu, H. C.; Wang, M.; Du, X.; Gao, B. B.; Elbaz, A.; Sun, L. D.; Liao, J. L.; Xiao, P. F.; Gu, Z. Z. 3D printing of bioinspired liquid superrepellent structures. Adv. Mater. 2018, 30, 1800103.

26

Yang, Y.; Li, X. J.; Zheng, X.; Chen, Z. Y.; Zhou, Q. F.; Chen, Y. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 2018, 30, 1704912.

27

Hu, S. T.; Cao, X. B.; Reddyhoff, T.; Puhan, D.; Vladescu, S. C.; Wang, Q.; Shi, X.; Peng, Z. K.; deMello, A. J.; Dini, D. Self-compensating liquid repellent surfaces with stratified morphology. ACS Appl Mater Interfaces 2020, 12, 4147–4182.

28

Liu, X. J.; Gu, H. C.; Ding, H. B.; Du, X.; He, Z. Z.; Sun, L. D.; Liao, J. L.; Xiao, P. F.; Gu, Z. Z. Programmable liquid adhesion on bio-inspired re-entrant structures. Small 2019, 15, e1902360.

29

Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F. et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.

30

Yoo, J. I.; Kim, S. H.; Ko, H. C. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Res. 2021, 14, 3143–3158.

31

Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119.

32

Chakraborty, M.; Weibel, J. A.; Schaber, J. A.; Garimella, S. V. The wetting state of water on a rose petal. Adv. Mater. Interfaces 2019, 6, 1900652.

33

Zhou, Z. Y.; Gao, T. C.; McCarthy, S.; Kozbial, A.; Tan, S. S.; Pekker, D.; Li, L.; Leu, P. W. Parahydrophobicity and stick-slip wetting dynamics of vertically aligned carbon nanotube forests. Carbon 2019, 152, 474–481.

34

Szczepanski, C. R.; Guittard, F.; Darmanin, T. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Adv. Colloid Interface Sci. 2017, 241, 37–61.

35

Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285.

36

Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.

37

Milionis, A.; Loth, E.; Bayer, I. S. Recent advances in the mechanical durability of superhydrophobic materials. Adv. Colloid Interface Sci. 2016, 229, 57–79.

38

Tian, X. L.; Verho, T.; Ras, R. H. A. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142–143.

39

Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

40

Zhao, R.; Chen, Y.; Liu, G. Z.; Jiang, Y. C.; Chen, K. L. Fabrication of self-healing waterbased superhydrophobic coatings from POSS modified silica nanoparticles. Mater. Lett. 2018, 229, 281–285.

41

Wang, H. X.; Fang, J.; Cheng, T.; Ding, J.; Qu, L. T.; Dai, L. M.; Wang, X. G.; Lin, T. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem. Commun. 2008, 7, 877–879.

42

Brakke, K. A. The surface evolver. Exp. Math. 1992, 1, 141–165.

43

Frenzel, T.; Kadic, M.; Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 2017, 358, 1072–1074.

44
3M United States. Scotch-BriteTM Aircraft Cleaning Pad[EB/OL]. https://www.3m.com/3M/en_US/p/d/b40066280/ (Accessed Dec 12, 2021).
45

Leo, T. L.; Kim, C. J. C. J. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100.

46

Haghanifar, S.; McCourt, M.; Cheng, B. L.; Wuenschell, J.; Ohodnicki, P.; Leu, P. W.; Leu P. W.; Leu P. W. Discovering high-performance broadband and broad angle antireflection surfaces by machine learning. Optica 2020, 7, 784–789.

47

Haghanifar, S.; Rodriguez De Vecchis, R. T.; Kim, K. J.; Wuenschell, J.; Sharma, S. P.; Lu, P.; Ohodnicki, P.; Leu, P. W. Flexible nanograss with highest combination of transparency and haze for optoelectronic plastic substrates. Nanotechnology 2018, 29, 42LT01.

48

Haghanifar, S.; Gao, T. C.; Vecchis, R. T. R. D.; Pafchek, B.; Jacobs, T. D. B.; Leu, P. W. Ultrahigh-transparency, ultrahigh-haze nanograss glass with fluid-induced switchable haze. Optica 2017, 4, 1522–1525.

49

Peng, K. Q.; Wang, X.; Li, L.; Wu, X. L.; Lee, S. T. High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 2010, 132, 6872–6873.

50

Panter, J. R.; Gizaw, Y.; Kusumaatmaja, H. Multifaceted design optimization for superomniphobic surfaces. Sci. Adv. 2019, 5, eaav7328.

51

Wang, B. M.; Gao, T. C.; Zhou, Z. Y.; Pafchek, B.; Leu, P. W. Frontside scattering structures for enhanced performance in flexible ultrathin crystalline silicon solar cells. J. Photon. Energy 2018, 8, 030501.

52

Gao, T. C.; Haghanifar, S.; Lindsay, M. G.; Lu, P.; Kayes, M. I.; Pafchek, B. D.; Zhou, Z. Y.; Ohodnicki, P. R.; Leu, P. W. Fundamental performance limits and haze evaluation of metal nanomesh transparent conductors. Adv. Opt. Mater. 2018, 6, 1700829.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2021
Revised: 13 December 2021
Accepted: 04 January 2022
Published: 06 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgement

This work was supported in part by the National Science Foundation (No. ECCS 1552712).

Return