Journal Home > Volume 15 , Issue 6

The ultrahigh specific energy density and low cost of lithium-sulfur batteries are suitable for the next generation of energy storage. However, the shuttle issue and sluggish conversion kinetics of polysulfides remain unsolved. Confining metal nanoclusters with strong polarity in conductive porous carbon is an effective strategy for tackling such knotty issues. Herein, we design and synthesize hollow cubic carbon embedded with highly dispersed cobalt nanoclusters as an effective sulfur reservoir for lithium sulfur batteries. The large cavity structure and well-dispersed cobalt nanoclusters, with uniform sizes near 11 nm, enable the hosting structure to hold the high sulfur loading, 70% capacity retention after 500 cycles at 2 C with a high sulfur loading of 6.5 mg·cm−2, effective stress release, accelerated polysulfide conversion, superior rate performance, strong physical confinement and chemical absorption capability. Further density functional theoretical calculations demonstrate that the well-dispersed cobalt nanoclusters in the hosting structure play a critical electrocatalytic role in boosting the capability of absorbing and converting polysulfides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries

Show Author's information Lin Sun1,2Yanxiu Liu1Kaiqiang Zhang2Feng Cheng1Ruiyu Jiang1Yangqing Liu1Jing Zhu1Zhong Jin2( )Huan Pang3( )
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

The ultrahigh specific energy density and low cost of lithium-sulfur batteries are suitable for the next generation of energy storage. However, the shuttle issue and sluggish conversion kinetics of polysulfides remain unsolved. Confining metal nanoclusters with strong polarity in conductive porous carbon is an effective strategy for tackling such knotty issues. Herein, we design and synthesize hollow cubic carbon embedded with highly dispersed cobalt nanoclusters as an effective sulfur reservoir for lithium sulfur batteries. The large cavity structure and well-dispersed cobalt nanoclusters, with uniform sizes near 11 nm, enable the hosting structure to hold the high sulfur loading, 70% capacity retention after 500 cycles at 2 C with a high sulfur loading of 6.5 mg·cm−2, effective stress release, accelerated polysulfide conversion, superior rate performance, strong physical confinement and chemical absorption capability. Further density functional theoretical calculations demonstrate that the well-dispersed cobalt nanoclusters in the hosting structure play a critical electrocatalytic role in boosting the capability of absorbing and converting polysulfides.

Keywords: electrocatalysis, lithium-sulfur battery, shuttle effect, Co nanocluster, hollow carbon

References(56)

1

Zhang, Y. S.; Zhang, P.; Li, B.; Zhang, S. J.; Liu, K. L.; Hou, R. H.; Zhang, X. L.; Silva, S. R. P.; Shao, G. S. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries. Energy Storage Mater. 2020, 27, 159–168.

2
Sun, L.; Xie, J.; Huang, S. C.; Liu, Y. X.; Zhang, L.; Wu, J.; Jin, Z. Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Sci. China Mater., 2022, 65, 51−58.DOI: 10.1007/s40843-021-1708-6.
3

Xie, J.; Sun, L.; Liu, Y. X.; Xi X. G.; Chen, R. Y.; Jin, Z. SiOx/C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res. 2021, 15, 395–400.

4

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S Batteries. Adv. Mater. 2020, 32, 2002168.

5

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

6

Yang, A. K.; Zhou, G. M.; Kong, X.; Vilá, R. A.; Pei, A.; Wu, Y. C.; Yu, X. Y.; Zheng, X. L.; Wu, C. L.; Liu, B. F. et al. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat. Nanotechnol. 2020, 15, 231–237.

7

He, D. Q.; Meng, J. T.; Chen, X. Y.; Liao, Y. Q.; Cheng, Z. X.; Yuan, L. X.; Li, Z.; Huang, Y. H. Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2001201.

8

Chen, K.; Fang, R. P.; Lian, Z.; Zhang, X. Y.; Tang, P.; Li, B.; He, K.; Wang, D. W.; Cheng, H. M.; Sun, Z. H. et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2021, 37, 224–232.

9

Li, Z.; Guan, B. Y.; Zhang, J. T.; Lou, X. W. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 2017, 1, 576–587.

10

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

11

Wang, T.; Zhang, Q. S.; Zhong, J.; Chen, M. X.; Deng, H. L.; Cao, J. H.; Wang, L.; Peng, L. L.; Zhu, J.; Lu, B. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv. Energy Mater. 2021, 11, 2100448.

12

Baumann, A. E.; Downing, J. R.; Burns, D. A.; Hersam, M. C.; Thoi V. S. Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 2020, 12, 37173–37181.

13

Jin, B. Y.; Yang, L. F.; Zhang, J. W.; Cai, Y. J.; Zhu, J.; Lu, J. G.; Hou, Y.; He, Q. G.; Xing, H. B.; Zhan, X. L. et al. Bioinspired binders actively controlling ion migration and accommodating volume change in high sulfur loading lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1902938.

14

Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S Battery. Chem. Mater. 2015, 27, 2048–2055.

15

Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y. J.; Wang, H. L.; Dai, H. J.; Andrews, J. C.; Cui, Y.; Toney, M. F. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 2012, 134, 6337–6343.

16

Liu, Y. Z.; Li, G. R.; Chen, Z. W.; Peng, X. S. CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li-S battery. J. Mater. Chem. A 2017, 5, 9775–9784.

17

Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Jin, Z. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.

18

Wang, L.; Wan, J. W.; Wang, J. Y.; Wang, D. Small structures bring big things: Performance control of hollow multishelled structures. Small Struct. 2021, 2, 2000041.

19

Zhao, J. L.; Yang, M.; Yang, N. L.; Wang J. Y.; Wang, D. Hollow micro-/nanostructure reviving lithium-sulfur batteries. Chem. Res. Chin. Univ. 2020, 36, 313–319.

20

Li, J. B.; Chen, C. Y.; Chen, Y. W.; Li, Z. H.; Xie, W. F.; Zhang, X.; Shao, M. F.; Wei, M. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv. Energy Mater. 2019, 9, 1901935.

21

Hu, C. J.; Yang, C. K.; Yang, J. J.; Han, N. N.; Yuan, R. Y.; Chen, Y. C.; Liu, H.; Xie, T. H.; Chen, R. D.; Zhou, H. H. et al. An entangled cobalt-nitrogen-carbon nanotube array electrode with synergetic confinement and electrocatalysis of polysulfides for stable Li-S batteries. ACS Appl. Energy Mater. 2019, 2, 2904–2912.

22

Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017, 38, 239–248.

23

Li, C. X.; Xi, Z. C.; Guo, D. X.; Chen, X. J.; Yin, L. W. Chemical immobilization effect on lithium polysulfides for lithium-sulfur Batteries. Small 2018, 14, 1701986.

24

Chen, T. M.; Shang, Z. C.; Yuan, B.; Wu, N. X.; Abuzar, M.; Yang, J. Y.; Gu, X. X.; Miao, C. Y.; Ling, M.; Li, S. Rational design of Co-NiSe2@N-Doped carbon hollow structure for enhanced Li-S battery performance. Energy Technol. 2020, 8, 2000302.

25

Du, L. Y.; Cheng, X. Y.; Gao, F. J.; Li, Y. B.; Bu, Y. F.; Zhang, Z. Q.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Electrocatalysis of S-doped carbon with weak polysulfide adsorption enhances lithium-sulfur battery performance. Chem. Commun. 2019, 55, 6365–6368.

26

Zhang, K. L.; Zhang, F.; Pan, H. L.; Yu, J.; Wang, L.; Wang, D.; Wang, L. B.; Hu, G.; Zhang, J. H.; Qian, Y. T. Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium-sulfur battery. Electrochim. Acta 2020, 354, 136648.

27

Su, L.; Zhang, J. Q.; Chen, Y.; Yang, W.; Ma, Z. P.; Shao, G. J.; Wang, G. X. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries. Nano Energy 2021, 85, 105981.

28

Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 2019, 20, 98–107.

29

Liu, J. T.; Xiao, S. H.; Zhang, Z. Y.; Chen, Y.; Xiang, Y.; Liu, X. Q.; Chen, J. S.; Chen, P. Naturally derived honeycomb-like N, S-codoped hierarchical porous carbon with MS2 (M = Co, Ni) decoration for high-performance Li-S battery. Nanoscale 2020, 12, 5114–5124.

30

Liang, G. M.; Wu, J. X.; Qian, X. Y.; Liu, M.; Li, Q.; He, Y. B.; Kim, J. K.; Li, B. H.; Kang, F. Y. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium-sulfur battery. ACS Appl. Mater. Interfaces 2016, 8, 23105–23113.

31

Liu, M.; Li, Q.; Qin, X. Y.; Liang, G. M.; Han, W. J.; Zhou, D.; He, Y. B.; Li, B. H.; Kang, F. Y. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small 2017, 13, 1602539.

32

Song, X.; Chen, G. P.; Wang, S. Q.; Huang, Y. P.; Jiang, Z. Y.; Ding, L. X.; Wang, H. H. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 26274–26282.

33

Hu, Q. Q.; Lu, J. Q.; Yang, C.; Zhang, C. C.; Hu, J. L.; Chang, S. Y.; Dong, H. Y.; Wu, C. Y.; Hong, Y.; Zhang, L. Z. Promoting reversible redox kinetics by separator architectures based on CoS2/HPGC interlayer as efficient polysulfide-trapping shield for Li-S batteries. Small 2020, 16, 2002046.

34

Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000091.

35

Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035–1043.

36

Wu, J. H.; Wang, S. Y.; Lei, Z. W.; Guan, R. N.; Chen, M. Q.; Du, P. W.; Lu, Y. L.; Cao, R. G.; Yang, S. F. Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Res. 2021, 14, 2596–2605.

37

Ye, J.; Li, C. X.; Yan, Y. S. Core-shell ZIF-67/ZIF-8-derived sea urchin-like cobalt/nitrogen Co-doped carbon nanotube hollow frameworks for ultrahigh adsorption and catalytic activities. J. Taiwan Inst. Chem. Eng. 2020, 112, 202–211.

38

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

39

Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

40

Dudarev, S. L.; Castell, M. R.; Botton, G. A.; Savrasov, S. Y.; Muggelberg, C.; Briggs, G. A. D.; Sutton, A. P.; Goddard, D. T. Understanding STM images and EELS spectra of oxides with strongly correlated electrons: A comparison of nickel and uranium oxides. Micron 2000, 31, 363–372.

41

Rondinelli, J. M.; Spaldin, N. A. Structural effects on the spin-state transition in epitaxially strained LaCoO3 films. Phys. Rev. B 2009, 79, 054409.

42

Shen, J. D.; Xu, X. J.; Liu, J.; Liu, Z. B.; Li, F. K.; Hu, R. Z.; Liu, J. W.; Hou, X. H.; Feng, Y. Z.; Yu, Y. et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 8986–8996.

43

Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B. S.; Xie, Q. S.; Peng, D. L. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020, 13, 2136–2142.

44

Huang, Y.; Fang, Y. J.; Lu, X. F.; Luan, D. Y.; Lou, X. W. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew. Chem., Int. Ed. 2020, 59, 19914–19918.

45

Zhang, W.; Jiang, X. F.; Zhao, Y. Y.; Carné-Sánchez, A.; Malgras, V.; Kim, J.; Kim, J. H.; Wang, S. B.; Liu, J.; Jiang, J. S. et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 2017, 8, 3538–3546.

46

Wang, X. X.; Na, Z. L.; Yin, D. M.; Wang, C. L.; Wu, Y. M.; Huang, G.; Wang, L. M. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation. ACS Nano 2018, 12, 12238–12246.

47

Qiao, Z. S.; Zhang, Y. G.; Meng, Z. H.; Xie, Q. S.; Lin, L.; Zheng, H. F.; Sa, B. S.; Lin, J.; Wang, L. S.; Peng, D. L. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100970.

48

Gao, Z.; Schwab, Y.; Zhang, Y. Y.; Song, N. N.; Li, X. D. Ferromagnetic nanoparticle-assisted polysulfide trapping for enhanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800563.

49

Kumar, P.; Jena, P.; Patro, P. K.; Lenka, R. K.; Sinha, A. S. K.; Singh, P.; Singh, R. K. Influence of lanthanum doping on structural and electrical/electrochemical properties of double perovskite Sr2CoMoO6 as anode materials for intermediate-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces 2019, 11, 24659–24667.

50

Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res. 2017, 10, 1010–1020.

51

Sun, T.; Zhao, X.; Li, B.; Shu, H.; Luo, L.; Xia, W.; Chen, M.; Zeng, P.; Yang, X.; Gao, P. et al. NiMoO4 Nanosheets anchored on N—S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li—S battery. Adv. Funct. Mater. 2021, 31, 2101285.

52

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

53

Deng, C.; Wang, Z. W.; Wang, S. P.; Yu, J. X. Inhibition of polysulfide diffusion in lithium-sulfur batteries: Mechanism and improvement strategies. J. Mater. Chem. A 2019, 7, 12381–12413.

54

Rehman, S.; Khan, K.; Zhao, Y. F.; Hou, Y. L. Nanostructured cathode materials for lithium-sulfur batteries: Progress, challenges and perspectives. J. Mater. Chem. A 2017, 5, 3014–3038.

55

Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T. E.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.

56

Tian, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901896.

File
12274_2022_4134_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 October 2021
Revised: 02 January 2022
Accepted: 03 January 2022
Published: 15 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0208200), the Fundamental Research Funds for the Central Universities of China (No. 0205-14380219), the National Natural Science Foundation of China (Nos. 22109069, 22022505, 21872069, 21802119, and 21808195), the Natural Science Foundation of Jiangsu Province (Nos. BK20181056 and BK20180008), the Funding For School-Level Research Projects of Yancheng Institute of Technology (Nos. xjr2019006, and xjr2019055), the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District, the Open Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province and some enterprise projects (Nos. WJGTT-XT3, 19KJA540001, and JNHB-068).

Return