Journal Home > Volume 15 , Issue 6

Self-assembled chain-like nanostructures utilizing localized surface plasmon resonance (LSPR) effect could enhance the local electromagnetic field for energy transfer, which provides huge structural advantages for some transmission-related applications such as photocatalysis. In this work, the dual-chain structure of Au chain wrapped CuS (denoted as Au Chain@CuS) was successfully synthesized by the one-step hydrothermal method. Namely, L-cysteine is used as the sulfur source and linking agent, and copper nitrate is the precursor of copper ions, forming the dual-chain driven by 15 nm uniform Au seeds. Transient absorption spectroscopy (TAS) and finite-difference-time-domain (FDTD) simulation exhibited the highly intensive electromagnetic field around the self-assembly chain, the raised formation and transfer rate of electron–hole pairs between the Au chain and surrounding CuS chain. Meanwhile, it shows an excellent photodegradation activity on dye rhodamine B (RhB). Within 1 h under simulated sunlight, the degradation rate reached 98.81% in Au Chain@CuS, which is 2.27 times higher compared to the bare CuS. The enhanced performance is mainly attributed to the near-field enhancement effect induced by LSPR, as well as the benefits of more effective resonance energy transfer (RET). This research comprehensively shows the electromagnetic field in LSPR metal chain is more intensive by order of magnitude relative to the isolated particles. Simultaneously the continuous CuS chain wrapped outside of the LSPR source effectively absorbs and utilizes the plasmonic energy, then promotes the formation of the photo-generated charge, thus increasing the photocatalytic performance. This founding of wrapped coupled-metal dual-chain provides a promising candidate for the highly efficient photocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain

Show Author's information Jinming MaXiangfu LiuRongwen WangFeng ZhangGuoli Tu( )
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Self-assembled chain-like nanostructures utilizing localized surface plasmon resonance (LSPR) effect could enhance the local electromagnetic field for energy transfer, which provides huge structural advantages for some transmission-related applications such as photocatalysis. In this work, the dual-chain structure of Au chain wrapped CuS (denoted as Au Chain@CuS) was successfully synthesized by the one-step hydrothermal method. Namely, L-cysteine is used as the sulfur source and linking agent, and copper nitrate is the precursor of copper ions, forming the dual-chain driven by 15 nm uniform Au seeds. Transient absorption spectroscopy (TAS) and finite-difference-time-domain (FDTD) simulation exhibited the highly intensive electromagnetic field around the self-assembly chain, the raised formation and transfer rate of electron–hole pairs between the Au chain and surrounding CuS chain. Meanwhile, it shows an excellent photodegradation activity on dye rhodamine B (RhB). Within 1 h under simulated sunlight, the degradation rate reached 98.81% in Au Chain@CuS, which is 2.27 times higher compared to the bare CuS. The enhanced performance is mainly attributed to the near-field enhancement effect induced by LSPR, as well as the benefits of more effective resonance energy transfer (RET). This research comprehensively shows the electromagnetic field in LSPR metal chain is more intensive by order of magnitude relative to the isolated particles. Simultaneously the continuous CuS chain wrapped outside of the LSPR source effectively absorbs and utilizes the plasmonic energy, then promotes the formation of the photo-generated charge, thus increasing the photocatalytic performance. This founding of wrapped coupled-metal dual-chain provides a promising candidate for the highly efficient photocatalysts.

Keywords: localized surface plasmon resonance, resonance energy transfer, photodegradation, near-field enhancement, Au Chain@CuS, dual-chain

References(44)

1

Shi, C.; Qi, H. J.; Sun, Z.; Qu, K. Q.; Huang, Z. H.; Li, J.; Dong, M. Y.; Guo, Z. H. Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB. J. Mater. Chem. C 2020, 8, 2238–2247.

2

Liu, N.; Huang, W. Y.; Zhang, X. D.; Tang, L.; Wang, L.; Wang, Y. X.; Wu, M. H. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal. B-Environ. 2018, 221, 119–128.

3

Anwer, H.; Mahmood, A.; Lee, J.; Kim, K. H.; Park, J. W.; Yip, A. C. K. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 2019, 12, 955–972.

4

Gong, J. L.; Li, C.; Wasielewski, M. R. Advances in solar energy conversion. Chem. Soc. Rev. 2019, 48, 1862–1864.

5

Lewis, N. S. Introduction: Solar energy conversion. Chem. Rev. 2015, 115, 12631–12632.

6

Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

7

Xiao, L. H.; Chen, X.; Yang, X. Y.; Sun, J. H.; Geng, J. X. Recent advances in polymer-based photothermal materials for biological applications. ACS Appl. Polym. Mater. 2020, 2, 4273–4288.

8

Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk–shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.

9

Meng, D. L.; Fan, J. B.; Ma, J. P.; Du, S. W.; Geng, J. X. The preparation and functional applications of carbon nanomaterial/conjugated polymer composites. Compos. Commun. 2019, 12, 64–73.

10

Chang, Y.; Cheng, Y.; Feng, Y. L.; Jian, H.; Wang, L.; Ma, X. M.; Li, X.; Zhang, H. Y. Resonance energy transfer-promoted photothermal and photodynamic performance of gold-copper sulfide yolk–shell nanoparticles for chemophototherapy of cancer. Nano Lett. 2018, 18, 886–897.

11

Jian, C. C.; Zhang, J. Q.; He, W. M.; Ma, X. C. Au-Al intermetallic compounds: A series of more efficient LSPR materials for hot carriers-based applications than noble metal Au. Nano Energy 2021, 82, 105763.

12

Xu, J.; Yang, W. M.; Huang, S. J.; Yin, H.; Zhang, H.; Radjenovic, P.; Yang, Z. L.; Tian, Z. Q.; Li, J. F. CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction. Nano Energy 2018, 49, 363–371.

13

Xue, X. H.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

14

Yu, T.; Wei, Q. S. Plasmonic molecular assays: Recent advances and applications for mobile health. Nano Res. 2018, 11, 5439–5473.

15

Vu, N. N.; Kaliaguine, S.; Do, T. O. Plasmonic photocatalysts for sunlight-driven reduction of CO2: Details, developments, and perspectives. ChemSusChem 2020, 13, 3967–3991.

16

Lee, J. B.; Choi, S.; Kim, J.; Nam, Y. S. Plasmonically-assisted nanoarchitectures for solar water splitting: Obstacles and breakthroughs. Nano Today 2017, 16, 61–81.

17

Yuan, L.; Lou, M. H.; Clark, B. D.; Lou, M. H.; Zhou, L. N.; Tian, S.; Jacobson, C. R.; Nordlander, P.; Halas, N. J. Morphology-dependent reactivity of a plasmonic photocatalyst. ACS Nano 2020, 14, 12054–12063.

18

Göeken, K. L.; Schasfoort, R. B. M.; Subramaniam, V.; Gill, R. Spermine induced reversible collapse of deoxyribonucleic acid-bridged nanoparticle-based assemblies. Nano Res. 2018, 11, 383–396.

19

Lin, L.; Chen, M.; Qin, H. Y.; Peng, X. G. Ag nanocrystals with nearly ideal optical quality: Synthesis, growth mechanism, and characterizations. J. Am. Chem. Soc. 2018, 140, 17734–17742.

20

Hooshmand, N.; Mousavi, H. S.; Panikkanvalappil, S. R.; Adibi, A.; El-Sayed, M. A. High-sensitivity molecular sensing using plasmonic nanocube chains in classical and quantum coupling regimes. Nano Today 2017, 17, 14–22.

21

Tira, C.; Tira, D.; Simon, T.; Astilean, S. Finite-difference time-domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance. J. Mol. Struct. 2014, 1072, 137–143.

22

Lv, Q.; Gao, M. Y.; Cheng, Z. H.; Chen, Q.; Shen, A. G.; Hu, J. M. Rational synthesis of hollow cubic CuS@Spiky Au core–shell nanoparticles for enhanced photothermal and SERS effects. Chem. Commun. 2018, 54, 13399–13402.

23

Huang, C. L.; Kumar, G.; Sharma, G. D.; Chen, F. C. Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications. Appl. Phys. Lett. 2020, 116, 253302.

24

Liu, Z. H.; Leow, W. R.; Chen, X. D. Bio-inspired plasmonic photocatalysts. Small Methods 2019, 3, 1800295.

25

Ma, X. C.; Sun, H.; Wang, Y. C.; Wu, X.; Zhang, J. Q. Electronic and optical properties of strained noble metals: Implications for applications based on LSPR. Nano Energy 2018, 53, 932–939.

26

Kavitha, R.; Kumar, S. G. A review on plasmonic Au–ZnO heterojunction photocatalysts: Preparation, modifications and related charge carrier dynamics. Mater. Sci. Semicond. Process. 2019, 93, 59–91.

27

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

28

Yu, G. Y.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W. X.; Yan, W. F.; Liu, G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912.

29

Liang, L.; Zheng, P.; Zhang, C.; Barman, I. A programmable DNA-silicification-based nanocavity for single-molecule plasmonic sensing. Adv. Mater. 2021, 33, 2005133.

30

Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041.

31

Li, J. T.; Cushing, S. K.; Meng, F. K.; Senty, T. R.; Bristow, A. D.; Wu, N. Q. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 2015, 9, 601–607.

32

Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

33

Wu, L. L.; Huang, C. S.; Emery, B. P.; Sedgwick, A. C.; Bull, S. D.; He, X. P.; Tian, H.; Yoon, J.; Sessler, J. L.; James, T. D. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 511–5139.

34

Lerner, E.; Cordes, T.; Ingargiola, A.; Alhadid, Y.; Chung, S. Y.; Michalet, X.; Weiss, S. Toward dynamic structural biology: Two decades of single-molecule Forster resonance energy transfer. Science 2018, 359, eaan1133.

35

Jeon, J.; You, D. G.; Um, W.; Lee, J.; Kim, C. H.; Shin, S.; Kwon, S.; Park, J. H. Chemiluminescence resonance energy transfer-based nanoparticles for quantum yield-enhanced cancer phototheranostics. Sci. Adv. 2020, 6, eaaz8400.

36

Singh, M. P.; Strouse, G. F. Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle. J. Am. Chem. Soc. 2010, 132, 9383–9391.

37

Tan, S. J.; Argondizzo, A.; Ren, J. D.; Liu, L. M.; Zhao, J.; Petek, H. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics 2017, 11, 806–812.

38

Xu, R.; Wen, L. Y.; Wang, Z. J.; Zhao, H. P.; Mu, G. N.; Zeng, Z. Q.; Zhou, M.; Bohm, S.; Zhang, H. M.; Wu, Y. H. et al. Programmable multiple plasmonic resonances of nanoparticle superlattice for enhancing photoelectrochemical activity. Adv. Funct. Mater. 2020, 30, 2005170.

39

Li, J. Y.; Dong, X. A.; Sun, Y. J.; Cen, W. L.; Dong, F. Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts. Appl. Catal. B-Environ. 2018, 226, 269–277.

40

Meng, D. L.; Yang, S. J.; Guo, L.; Li, G. X.; Ge, J. C.; Huang, Y.; Bielawski, C. W.; Geng, J. X. The enhanced photothermal effect of graphene/conjugated polymer composites: Photoinduced energy transfer and applications in photocontrolled switches. Chem. Commun. 2014, 50, 14345–14348.

41

Frens, G. Particle size and sol stability in metal colloids. Kolloid-Z. u. Z. Polymere 1972, 250, 736–741.

42

Jeong, S.; Liu, Y.; Zhong, Y. X.; Zhan, X.; Li, Y. D.; Wang, Y.; Cha, P. M.; Chen, J.; Ye, X. C. Heterometallic seed-mediated growth of monodisperse colloidal copper nanorods with widely tunable plasmonic resonances. Nano Lett. 2020, 20, 7263–7271.

43

Minceva-Sukarova, B.; Najdoski, M.; Grozdanov, I.; Chunnilall, C. J. Raman spectra of thin solid films of some metal sulfides. J. Mol. Struct. 1997, 410–411, 267–270.

44

Jin, P. J.; Yao, Z. Q.; Zhang, M. L.; Li, Y. H.; Xing, H. P. A pigment (CuS) identified by micro-Raman spectroscopy on a Chinese funerary lacquer ware of West Han Dynasty. J. Raman Spectrosc. 2010, 41, 222–225.

File
12274_2022_4129_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2021
Revised: 30 December 2021
Accepted: 01 January 2022
Published: 10 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was funded by the National Key R&D Program of China (No. 2018YFA0209200).

Return