Journal Home > Volume 15 , Issue 6

Water dissociation process is generally regarded as the rate-limiting step for alkaline hydrogen evolution reaction (HER), and severely inhibits the catalytic efficiency of Pt based catalysts. To overcome this problem, the in-situ constructed interfaces of Pt-Co alloy and amorphous cobalt oxide (CoOx) on the carbon powder are designed. The amorphous CoOx at Pt-Co/CoOx interfaces not only provide active sites for water dissociation to facilitate Volmer step, but also produce the strong electronic transfer with Pt-Co. Accordingly, the obtained interfacial catalysts exhibit outstanding alkaline HER performance with a Tafel slope of 29.3 mV·dec−1 and an ultralow overpotential of only 28 mV at 10 mA·cm−2. Density functional theory (DFT) reveals that the electronic accumulation on the interfacial Co atom in Pt-Co/CoOx constructing the novel active site for water dissociation. Compared to the Pt-Co, all of the energy barriers for water adsorption, water dissociation and hydrogen adsorption/desorption are reduced in Pt-Co/CoOx interfaces, suggesting a boosted HER kinetics for alkaline HER.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution

Show Author's information Yandong Wang1Wei Wu1Runzhe Chen1Caoxin Lin1Shichun Mu2Niancai Cheng1( )
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Abstract

Water dissociation process is generally regarded as the rate-limiting step for alkaline hydrogen evolution reaction (HER), and severely inhibits the catalytic efficiency of Pt based catalysts. To overcome this problem, the in-situ constructed interfaces of Pt-Co alloy and amorphous cobalt oxide (CoOx) on the carbon powder are designed. The amorphous CoOx at Pt-Co/CoOx interfaces not only provide active sites for water dissociation to facilitate Volmer step, but also produce the strong electronic transfer with Pt-Co. Accordingly, the obtained interfacial catalysts exhibit outstanding alkaline HER performance with a Tafel slope of 29.3 mV·dec−1 and an ultralow overpotential of only 28 mV at 10 mA·cm−2. Density functional theory (DFT) reveals that the electronic accumulation on the interfacial Co atom in Pt-Co/CoOx constructing the novel active site for water dissociation. Compared to the Pt-Co, all of the energy barriers for water adsorption, water dissociation and hydrogen adsorption/desorption are reduced in Pt-Co/CoOx interfaces, suggesting a boosted HER kinetics for alkaline HER.

Keywords: water dissociation, interfacial construction, amorphous cobalt oxide, dual active site, electronic regulation

References(57)

1

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

2

He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

3

Zhang, B.; Zhang, L. S.; Tan, Q. Y.; Wang, J. S.; Liu, J.; Wan, H. Z.; Miao, L.; Jiang, J. J. Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ. Sci. 2020, 13, 3007–3013.

4

Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

5

Lin, C. X.; Huang, Z. Q.; Zhang, Z. Y.; Zeng, T.; Chen, R. Z.; Tan, Y. Y.; Wu, W.; Mu, S. C.; Cheng, N. C. Structurally ordered Pt3Co nanoparticles anchored on n-doped graphene for highly efficient hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2020, 8, 16938–16945.

6

Li, Z.; Feng, Y.; Liang, Y. L.; Cheng, C. Q.; Dong, C. K.; Liu, H.; Du, X. W. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 2020, 32, 1908521.

7

Pu, Z. H.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Mu, S. C.; Zhao, W. Y.; Su, F. M.; Zhang, G. X.; Liao, S. J. et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett. 2020, 12, 21.

8

Tan, Y. S.; Xie, R. K.; Zhao, S. Y.; Lu, X. K.; Liu, L. X.; Zhao, F. J.; Li, C. Z.; Jiang, H.; Chai, G. L.; Brett, D. J. L. et al. Facile fabrication of robust hydrogen evolution electrodes under high current densities via Pt@Cu interactions. Adv. Funct. Mater. 2021, 31, 2105579.

9

Lu, J. J.; Zhang, L. S.; Jing, S. Y.; Luo, L.; Yin, S. B. Remarkably efficient PtRh alloyed with nanoscale WC for hydrogen evolution in alkaline solution. Int. J. Hydrogen Energy 2017, 42, 5993–5999.

10

Cai, H. R.; Xiong, L. F.; Wang, B.; Zhu, D. L.; Hao, H. J.; Yu, X. J.; Li, C.; Yang, S. C. N-doped CNT as electron transport promoter by bridging CoP and carbon cloth toward enhanced alkaline hydrogen evolution. Chem. Eng. J. 2022, 430, 132824.

11

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

12

Lu, Z. J.; Cao, Y. L.; Xie, J.; Hu, J. D.; Wang, K.; Jia, D. Z. Construction of Co2P/CoP@Co@NCNT rich-interface to synergistically promote overall water splitting. Chem. Eng. J. 2022, 430, 132877.

13

Chen, Q.; Wei, B.; Wei, Y.; Zhai, P. B.; Liu, W.; Gu, X. K.; Yang, Z. L.; Zuo, J. H.; Zhang, R. F.; Gong, Y. J. Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. Appl. Catal. B Environ. 2022, 301, 120754.

14

Lee, H.; Lim, J.; Lee, C.; Back, S.; An, K.; Shin, J. W.; Ryoo, R.; Jung, Y.; Park, J. Y. Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nat. Commun. 2018, 9, 2235.

15

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

16

Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864.

17

Zhang, C. T.; Liu, Q.; Wang, P. Y.; Zhu, J. W.; Chen, D.; Yang, Y.; Zhao, Y. F.; Pu, Z. H.; Mu, S. C. Molybdenum carbide-PtCu nanoalloy heterostructures on MOF-derived carbon toward efficient hydrogen evolution. Small 2021, 17, 2104241.

18

Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

19

Wang, Z. Q.; Ren, X.; Luo, Y. L.; Wang, L.; Cui, G. W.; Xie, F. Y.; Wang, H. J.; Xie, Y.; Sun, X. P. An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale 2018, 10, 12302–12307.

20

Xu, W. J.; Chang, J. F.; Cheng, Y. G.; Liu, H. Q.; Li, J. F.; Ai, Y. J.; Hu, Z. A.; Zhang, X. Y.; Wang, Y. M.; Liang, Q. L. et al. A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res. 2022, 15, 965–971.

21

Wang, P. T.; Shao, Q.; Guo, J.; Bu, L. Z.; Huang, X. Q. Promoting alkaline hydrogen evolution catalysis on p-decorated, Ni-segregated Pt-Ni-P nanowires via a synergetic cascade route. Chem. Mater. 2020, 32, 3144–3149.

22

Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

23

Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

24

Qin, R.; Hou, J. G.; Xu, C. X.; Yang, H. X.; Zhou, Q. X.; Chen, Z. Z.; Liu, H. Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Res. 2020, 13, 2950–2957.

25
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. in press, https://doi.org/10.1007/s12274-021-3794-0.
26

Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

27

Yu, X. W.; dos Santos, E. C.; White, J.; Salazar-Alvarez, G.; Pettersson, L. G. M.; Cornell, A.; Johnsson, M. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution utilizing an efficient MoOx/Pt catalyst. Small 2021, 17, 2104288.

28

Zhou, M.; Li, H. F.; Long, A. C.; Zhou, B.; Lu, F.; Zhang, F. C.; Zhan, F.; Zhang, Z. X.; Xie, W. W.; Zeng, X. H. et al. Modulating 3d orbitals of Ni atoms on Ni-Pt edge sites enables highly-efficient alkaline hydrogen evolution. Adv. Energy Mater. 2021, 11, 2101789.

29

Zhang, J. K.; Gao, Z.; Wang, S.; Wang, G. F.; Gao, X. F.; Zhang, B. Y.; Xing, S. F.; Zhao, S. C.; Qin, Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nat. Commun. 2019, 10, 4166.

30

Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B Environ. 2020, 276, 119165.

31

Xu, Q. L.; Yu, T. Q.; Chen, J. L.; Qian, G. F.; Song, H. N.; Luo, L.; Chen, Y. L.; Liu, T. Y.; Wang, Y. Z.; Yin, S. B. Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 16355–16363.

32

Zhang, W.; Jiang, X.; Dong, Z. M.; Wang, J.; Zhang, N.; Liu, J.; Xu, G. R.; Wang, L. Porous Pd/NiFeOx nanosheets enhance the pH-universal overall water splitting. Adv. Funct. Mater. 2021, 31, 2107181.

33

Zeng, J. S.; Zhang, L.; Zhou, Q.; Liao, L. L.; Qi, Y.; Zhou, H. Q.; Li, D. Y.; Cai, F. M.; Wang, H.; Tang, D. S. et al. Boosting alkaline hydrogen and oxygen evolution kinetic process of tungsten disulfide-based heterostructures by multi-site engineering. Small 2022, 18, 2104624.

34

Lim, J.; Jung, J. W.; Kim, N. Y.; Lee, G. Y.; Lee, H. J.; Lee, Y.; Choi, D. S.; Yoon, K. R.; Kim, Y. H.; Kim, I. D. et al. O. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn–air battery. Energy Storage Mater. 2020, 32, 517–524.

35

Yang, Y. M.; Ji, Y. J.; Li, G. Y.; Li, Y. Y.; Jia, B. H.; Yan, J. Q.; Ma, T. Y.; Liu, S. Z. F. IrOx@In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2021, 60, 26790–26797.

36

Yan, Y.; Liang, S.; Wang, X.; Zhang, M. Y.; Hao, S. M.; Cui, X.; Li, Z.; Lin, Z. Q. Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc–air batteries. Proc. Natl. Acad. Sci. USA 2021, 118, e2110036118.

37

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

38

Wu, D. L.; Chen, D.; Zhu, J. W.; Mu, S. C. Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 2021, 17, 2102777.

39

Xu, L.; Tian, Y. H.; Deng, D. J.; Li, H. P.; Zhang, D.; Qian, J. C.; Wang, S.; Zhang, J. M.; Li, H. N.; Sun, S. H. Cu nanoclusters/FeN4 amorphous composites with dual active sites in N-doped graphene for high-performance Zn–air batteries. ACS Appl. Mater. Interfaces 2020, 12, 31340–31350.

40

Wu, M. J.; Wei, Q. L.; Zhang, G. X.; Qiao, J. L.; Wu, M. X.; Zhang, J. H.; Gong, Q. J.; Sun, S. H. Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc–air batteries. Adv. Energy Mater. 2018, 8, 1801836.

41

Hua, B.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J. L. A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247–254.

42

Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.

43

Yu, T. Q.; Xu, Q. L.; Qian, G. F.; Chen, J. L.; Zhang, H.; Luo, L.; Yin, S. B. Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustainable Chem. Eng. 2020, 8, 17520–17526.

44

Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004, 93–95, 665–670.

45

Jiang, L. H.; Zhou, Z. H.; Li, W. Z.; Zhou, W. J.; Song, S. Q.; Li, H. Q.; Sun, G. Q.; Xin, Q. Effects of treatment in different atmosphere on Pt3Sn/C electrocatalysts for ethanol electro-oxidation. Energy Fuels 2004, 18, 866–871.

46

Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

47

Jang, S. W.; Dutta, S.; Kumar, A.; Hong, Y. R.; Kang, H.; Lee, S.; Ryu, S.; Choi, W.; Lee, I. S. Holey Pt nanosheets on NiFe-hydroxide laminates: Synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 2020, 14, 10578–10588.

48

Wang, M. J.; Xu, Y.; Peng, C. K.; Chen, S. Y.; Lin, Y. G.; Hu, Z. W.; Sun, L.; Ding, S. Y.; Pao, C. W.; Shao, Q. et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal–organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 16512–16518.

49

Chen, W. S; Xue, J.; Bao, Y. F.; Feng, L. G. Surface engineering of nano-ceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction. Chem. Eng. J. 2020, 381, 122752.

50

Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

51

Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2021, 2107597.

52

Hu, S.; Goenaga, G.; Melton, C.; Zawodzinski, T. A.; Mukherjee, D. PtCo/CoOx nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl. Catal. B Environ. 2016, 182, 286–296.

53

Lu, Z. J.; Xie, J.; Hu, J. D.; Wang, K.; Cao, Y. L. In situ replacement synthesis of Co@NCNT encapsulated CoPt3@Co2P heterojunction boosting methanol oxidation and hydrogen evolution. Small 2021, 17, 2104656.

54

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

55

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal–organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

56

Zhang, L. J.; Jang, H.; Wang, Y.; Li, Z. J.; Zhang, W.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Exploring the dominant role of atomic- and nano-ruthenium as active sites for hydrogen evolution reaction in both acidic and alkaline media. Adv. Sci. 2021, 8, 2004516.

57
Zhang, D. D.; Li, H. B.; Riaz, A.; Sharma, A.; Liang, W. S.; Wang, Y.; Chen, H. J.; Vora, K.; Yan, D.; Su, Z. et al. Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy Environ. Sci., in press, https://doi.org/10.1039/D1EE02013G.
File
12274_2022_4128_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 December 2021
Revised: 29 December 2021
Accepted: 30 December 2021
Published: 27 January 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21875039), the Project on the Integration of Industry-Education-Research of Fujian Province (No. 2021H6020), and Fujian province’s high level innovative and entrepreneurial talents (No. 50012709).

Return