Journal Home > Volume 15 , Issue 6

Pore structure plays critical roles in electrode kinetics but very challenging to tailor porous nanowires with rationally distributed pore sizes in a bioelectrochemical system. Herein a hierarchically porous nanowires-material is delicately tuned for an optimal pore structure by adjusting the weight percentage of SiO2-hard template in an electrospinning precursor solution. The as-prepared optimal electrospinning nanowires further used as an anode of microbial fuel cells (MFCs), delivering a maximum output power density of 1,407.42 mW·m−2 with 4.24 and 10 times higher than that of the non-porous fiber and carbon cloth anode, respectively. The great enhancement is attributed to the rational pore structure which offers the largest surface area while the rich-mesopores well match with the size of electron mediators for a high density of catalytic centers. This work provides thoughtful insights to design of hierarchical porous electrode for high-performance MFCs and other bioelectrochemical system devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tuning electrospinning hierarchically porous nanowires anode for enhanced bioelectrocatalysis in microbial fuel cells

Show Author's information Shiwei Qian1,§Xiaoshuai Wu2,§( )Zhuanzhuan Shi2Xiaofen Li2Xin Sun1Yongjia Ma1Wei Sun3Chunxian Guo2ChangMing Li1,2( )
Institute for Advanced Cross-field Science and College of Life Science, Qingdao University, Qingdao 266071, China
Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China

§ Shiwei Qian and Xiaoshuai Wu contributed equally to this work.

Abstract

Pore structure plays critical roles in electrode kinetics but very challenging to tailor porous nanowires with rationally distributed pore sizes in a bioelectrochemical system. Herein a hierarchically porous nanowires-material is delicately tuned for an optimal pore structure by adjusting the weight percentage of SiO2-hard template in an electrospinning precursor solution. The as-prepared optimal electrospinning nanowires further used as an anode of microbial fuel cells (MFCs), delivering a maximum output power density of 1,407.42 mW·m−2 with 4.24 and 10 times higher than that of the non-porous fiber and carbon cloth anode, respectively. The great enhancement is attributed to the rational pore structure which offers the largest surface area while the rich-mesopores well match with the size of electron mediators for a high density of catalytic centers. This work provides thoughtful insights to design of hierarchical porous electrode for high-performance MFCs and other bioelectrochemical system devices.

Keywords: biofilm, microbial fuel cells, hierarchically porous nanowires, interfacial electron transfer

References(49)

1

Li, M.; Zhou, S. Q. Efficacy of Cu(II) as an electron-shuttle mediator for improved bioelectricity generation and Cr(VI) reduction in microbial fuel cells. Bioresour. Technol. 2019, 273, 122–129.

2

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

3

Zhao, C. E.; Gai, P. P.; Song, R. B.; Chen, Y.; Zhang, J. R.; Zhu, J. J. Nanostructured material-based biofuel cells: Recent advances and future prospects. Chem. Soc. Rev. 2017, 46, 1545–1564.

4

Lovley, D. R.; Holmes, D. E. Electromicrobiology: The ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol 2022, 20, 5–19.

5

Schröder, U.; Harnisch, F. Life electric—Nature as a blueprint for the development of microbial electrochemical technologies. Joule 2017, 1, 244–252.

6

Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690.

7

Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

8
Zhu, Q.; Hu, J. P.; Liu, B. C.; Hu, S. G.; Liang, S.; Xiao, K. K.; Yang, J. K.; Hou, H. J. Recent advances on the development of functional materials in microbial fuel cells: From fundamentals to challenges and outlooks. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12173.
9

Su, Y. D.; McCuskey, S. R.; Leifert, D.; Moreland, A. S.; Zhou, L. Y.; Llanes, L. C.; Vazquez, R. J.; Sepunaru, L.; Bazan, G. C. A living biotic-abiotic composite that can switch function between current generation and electrochemical energy storage. Adv. Funct. Mater. 2021, 31, 2007351.

10

Mei, T.; Cong, C.; Huang, Q.; Song, T. S.; Xie, J. J. Effect of 3D carbon electrodes with different pores on solid-phase microbial fuel cell. Energy Fuels 2020, 34, 16765–16771.

11

Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244.

12

He, Y. H.; Tan, Q.; Lu, L. L.; Sokolowski, J.; Wu, G. Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: Self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2019, 2, 231–251.

13

Trapero, J. R.; Horcajada, L.; Linares, J. J.; Lobato, J. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy 2017, 185, 698–707.

14

Sonawane, J. M.; Yadav, A.; Ghosh, P. C.; Adeloju, S. B. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017, 90, 558–576.

15

Kumar, R.; Singh, L.; Zularisam, A. W. Enhanced oxygen reduction reaction in air-cathode microbial fuel cells using flower-like Co3O4 as an efficient cathode catalyst. Int. J. Hydrogen Energy 2017, 42, 19287–19295.

16

Birry, L.; Mehta, P.; Jaouen, F.; Dodelet, J. P.; Guiot, S. R.; Tartakovsky, B. Application of iron-based cathode catalysts in a microbial fuel cell. Electrochim. Acta 2011, 56, 1505–1511.

17

Ben Liew, K.; Daud, W. R. W.; Ghasemi, M.; Leong, J. X.; Lim, S. S.; Ismail, M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. Int. J. Hydrogen Energy 2014, 39, 4870–4883.

18

Tao, L.; Xie, M. S.; Chiew, G. G. Y.; Wang, Z. J.; Chen, W. N.; Wang, X. Improving electron trans-inner membrane movements in microbial electrocatalysts. Chem. Commun. 2016, 52, 6292–6295.

19

Yuan, H. Y.; Hou, Y.; Abu-Reesh, I. M.; Chen, J. H.; He, Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 2016, 3, 382–401.

20

Mousavi, M. R.; Ghasemi, S.; Sanaee, Z.; Nejad, Z. G.; Mardanpour, M. M.; Yaghmaei, S.; Ghorbanzadeh, M. Improvement of the microfluidic microbial fuel cell using a nickel nanostructured electrode and microchannel modifications. J. Power Sources 2019, 437, 226891.

21

Rethinasabapathy, M.; Vilian, A. T. E.; Hwang, S. K.; Kang, S. M.; Cho, Y.; Han, Y. K.; Rhee, J. K.; Huh, Y. S. Cobalt ferrite microspheres as a biocompatible anode for higher power generation in microbial fuel cells. J. Power Sources 2021, 483, 229170.

22

Zou, L.; Qiao, Y.; Wu, Z. Y.; Wu, X. S.; Xie, J. L.; Yu, S. H.; Guo, J. H.; Li, C. M. Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv. Energy Mater. 2016, 6, 1501535.

23

Chen, Q.; Pu, W. H.; Hou, H. J.; Hu, J. P.; Liu, B. C.; Li, J. F.; Cheng, K.; Huang, L.; Yuan, X. Q.; Yang, C. Z. et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells. Bioresour. Technol. 2018, 249, 567–573.

24

Munjal, M.; Tiwari, B.; Lalwani, S.; Sharma, M.; Singh, G.; Sharma, R. K. An insight of bioelectricity production in mediator less microbial fuel cell using mesoporous Cobalt Ferrite anode. Int. J. Hydrogen. Energy 2020, 45, 12525–12534.

25

Wang, Y. Q.; Li, B.; Xiang, X. D.; Guo, C. L.; Li, W. S. Carbon nanotubes conjugated mesoporous tungsten trioxide as anode electrocatalyst for microbial fuel cells. ECS J. Solid State Sci. Technol. 2020, 9, 115010.

26

Yan, Y. X.; Chen, G. R.; She, P. H.; Zhong, G. Y.; Yan, W. F.; Guan, B. Y.; Yamauchi, Y. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 2020, 32, 2004654.

27

Song, Y. E.; Lee, S.; Kim, M.; Na, J. G.; Lee, J.; Lee, J.; Kim, J. R. Metal-free cathodic catalyst with nitrogen- and phosphorus-doped ordered mesoporous carbon (NPOMC) for microbial fuel cells. J. Power Sources 2020, 451, 227816.

28

Wu, X. S.; Qiao, Y.; Shi, Z. Z.; Tang, W.; Li, C. M. Hierarchically porous n-doped carbon nanotubes/reduced graphene oxide composite for promoting flavin-based interfacial electron transfer in microbial fuel cells. ACS Appl. Mater. Interfaces 2018, 10, 11671–11677.

29

Wu, X. S.; Shi, Z. Z.; Zou, L.; Li, C. M.; Qiao, Y. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells. J. Power Sources 2018, 378, 119–124.

30

Zou, L.; Qiao, Y.; Zhong, C. Y.; Li, C. M. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells. Electrochim. Acta 2017, 229, 31–38.

31

Chong, P.; Erable, B.; Bergel, A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. Bioresour. Technol. 2019, 289, 121641.

32

Bian, B.; Shi, D.; Cai, X. B.; Hu, M. J.; Guo, Q. Q.; Zhang, C. H.; Wang, Q.; Sun, A. X.; Yang, J. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 2018, 44, 174–180.

33

Yu, F.; Wang, C. X.; Ma, J. Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability. Electrochim. Acta 2018, 259, 1059–1067.

34

Xie, X.; Hu, L. B.; Pasta, M.; Wells, G. F.; Kong, D. S.; Criddle, C. S.; Cui, Y. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 2011, 11, 291–296.

35

He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H. et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 2020, 32, 2003577.

36

Zang, J.; Wang, F. T.; Cheng, Q. Q.; Wang, G. L.; Ma, L. S.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Xie, D. Q.; Yang, H. Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 2020, 8, 3686–3691.

37

Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493.

38

Mouhib, M.; Antonucci, A.; Reggente, M.; Amirjani, A.; Gillen, A. J.; Boghossian, A. A. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. 2019, 12, 2184–2199.

39

Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F. et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.

40

Freyman, M. C.; Kou, T. Y.; Wang, S. W.; Li, Y. 3D printing of living bacteria electrode. Nano Res. 2020, 13, 1318–1323.

41

Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.

42

Meng, A. Y.; Wu, S.; Cheng, B.; Yu, J. G.; Xu, J. S. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. J. Mater. Chem. A 2018, 6, 4729–4736.

43

Yan, J. H.; Dong, K. Q.; Zhang, Y. Y.; Wang, X.; Aboalhassan, A. A.; Yu, J. Y.; Ding, B. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat. Commun. 2019, 10, 5584.

44

Chen, J. R.; Yan, X. H.; Fu, C. H.; Feng, Y.; Lin, C.; Li, X. L.; Shen, S. Y.; Ke, C. C.; Zhang, J. L. Insight into the rapid degradation behavior of nonprecious metal Fe-N-C electrocatalyst-based proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 2019, 11, 37779–37786.

45

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.

46

Yang, H. P.; Lin, Q.; Wu, Y.; Li, G. D.; Hu, Q.; Chai, X. Y.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 2020, 70, 104454.

47

Kabir, S.; Medina, S.; Wang, G. X.; Bender, G.; Pylypenko, S.; Neyerlin, K. C. Improving the bulk gas transport of Fe-N-C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications. Nano Energy 2020, 73, 104791.

48

Wu, X. S.; Qiao, Y.; Guo, C. X.; Shi, Z. Z.; Li, C. M. Nitrogen doping to atomically match reaction sites in microbial fuel cells. Commun. Chem. 2020, 3, 68.

49

Mukherjee, P.; Saravanan, P. Graphite nanopowder functionalized 3-D acrylamide polymeric anode for enhanced performance of microbial fuel cell. Int. J. Hydrogen Energy 2020, 45, 23411–23421.

File
12274_2022_4120_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2021
Revised: 22 December 2021
Accepted: 28 December 2021
Published: 25 February 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the National Key Research and Development Program of China (No. 2021YFA0910400), the National Natural Science Foundation of China (Nos. 21605110 and 21972102), Natural Science Research Foundation of Jiangsu Higher Education Institutions (Nos. 19KJB150038 and 21KJB180018), Natural Science Foundation of Suzhou University of Science and Technology (Nos. XKQ2018014 and XKZ2019011). This work was also funded by Open Foundation of The Jiangsu Key Laboratory for Biochip and Medical Diagnosis, Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application, Collaborative Innovation Center of Water Treatment Technology and Material, The innovation platform for Academinicians of Hainan Province, Suzhou Foreign Academician Workstation.

Return