AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An efficient and versatile biopolishing strategy to construct high performance zinc anode

Guoqiang Sun1Mengqi Zhou1Xi-Yan Dong1,2Shuang-Quan Zang1( )Liangti Qu3( )
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

High-performance Zn anodes with ravine structure are prepared via a simple, fast, andversatile biopolishing strategy. The ravine structure formed by sulfhydryl etching for 30 min not onlyincreases the electroactive area of Zn anode but also regulates the distribution of electric fieldand Zn ions, ensuring the homogeneous deposition and stripping of Zn ions.

Abstract

Conventional strategies for highly reversible Zn anodes usually involve complex and time-consuming production processes of current collectors, expensive and toxic electrolyte additives, or the introduction of inactive materials in protective layer. Here, we develop a fast, facile, and environmentally friendly biopolishing method to prepare dendrite-free Zn anodes, which merely involves the simple immersion of Zn foil in a biocompatible cysteine aqueous solution. The ravine structure formed by sulfhydryl etching for 30 min not only increases the electroactive area of Zn anode but also regulates the distribution of electric field and Zn ions, ensuring the homogeneous deposition and stripping of Zn ions. The biopolished Zn anode can be operated steadily for 2,000 h with a low voltage hysteresis at a current density of 1 mA·cm−2. In addition, Zn anodes with a cycle life of 500 h can be built by soaking for only 5 min, proving the high efficiency of the proposed method. This strategy is generalized to substances with sulfhydryl groups for polishing Zn electrodes with improved performance. The cysteine-polished Zn//activated carbon supercapacitor can stably run for 20,000 cycles without obvious capacity attenuation. The proposed strategy shows potential for producing advanced Zn anodes.

Electronic Supplementary Material

Download File(s)
12274_2022_4116_MOESM1_ESM.pdf (3.5 MB)

References

1

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

2

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

3

Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 415–418.

4

Li, B. Q.; Zhang, S. Y.; Wang, B.; Xia, Z. J.; Tang, C.; Zhang, Q. A porphyrin covalent organic framework cathode for flexible Zn-air batteries. Energy Environ. Sci. 2018, 11, 1723–1729.

5

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

6

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933–935.

7

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-Ion batteries. Joule 2020, 4, 771–799.

8

Liu, H. Y.; Wang, J. G.; You, Z. Y.; Wei, C. G.; Kang, F. Y.; Wei, B. Q. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Mater. Today 2021, 42, 73–98.

9

Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Gao, J.; Jin, X. T.; Zhao, Y.; Jiang, L.; Qu, L. T. A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 2018, 11, 3367–3374.

10

Jia, H.; Wang, Z. Q.; Tawiah, B.; Wang, Y. D.; Chan, C. Y.; Fei, B.; Pan, F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020, 70, 104523.

11

Yang, Q.; Guo, Y.; Yan, B. X.; Wang, C. D.; Liu, Z. X.; Huang, Z. D.; Wang, Y. K.; Li, Y. R.; Li, H. F.; Song, L. et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 2020, 32, 2001755.

12

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

13

Shin, J.; Lee, J.; Park, Y.; Choi, J. W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044.

14

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

15

Qian, Y.; Meng, C.; He, J. X.; Dong, X. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J. Power Sources 2020, 480, 228871.

16

Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H. Y.; Zhang, J. T. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta 2019, 296, 755–761.

17

Kang, Z.; Wu, C. L.; Dong, L. B.; Liu, W. B.; Mou, J.; Zhang, J. W.; Chang, Z. W.; Jiang, B. Z.; Wang, G. X.; Kang, F. Y. et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 3364–3371.

18

Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. A.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

19

Sun, K. E. K.; Hoang, T. K. A.; Doan, T. N. L.; Yu, Y.; Zhu, X.; Tian, Y.; Chen, P. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 2017, 9, 9681–9687.

20

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

21

Cong, J. L.; Shen, X.; Wen, Z. P.; Wang, X.; Peng, L. Q.; Zeng, J.; Zhao, J. B. Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Mater. 2021, 35, 586–594.

22

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

23

Zhao, K. N.; Wang, C. X.; Yu, Y. H.; Yan, M. Y.; Wei, Q. L.; He, P.; Dong, Y. F.; Zhang, Z. Y.; Wang, X. D.; Mai, L. Q. Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 2018, 5, 1800848.

24

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

25

Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

26

Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

27

Hieu, L. T.; So, S.; Kim, I. T.; Hur, J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chem. Eng. J. 2021, 411, 128584.

28

Deng, C. B.; Xie, X. S.; Han, J. W.; Tang, Y.; Gao, J. W.; Liu, C. X.; Shi, X. D.; Zhou, J.; Liang, S. Q. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 2020, 30, 2000599.

29

Qian, B. T.; Shen, Z. Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 2005, 21, 9007–9009.

30

Wang, H. J.; Yang, Z.; Yu, J.; Wu, Y. Z.; Shao, W. J.; Jiang, T. T.; Xu, X. L. Preparation of lotus-like hierarchical microstructures on zinc substrate and study of its wettability. RSC Adv. 2014, 4, 33730–33738.

31

Sangaj, N. S.; Malshe, V. C. Permeability of polymers in protective organic coatings. Prog. Org. Coat. 2004, 50, 28–39.

32

Winiarski, J.; Tylus, W.; Winiarska, K.; Szczygieł, I.; Szczygieł, B. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. 2018, 2018, 2079278.

33

Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.

34

Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8, 1801090.

35

Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.

36

Wang, J. D.; Cai, Z.; Xiao, R.; Ou, Y. T.; Zhan, R. M.; Yuan, Z.; Sun, Y. M. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 2020, 12, 23028–23034.

37

Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal–organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

38

Kim, J. Y.; Liu, G. C.; Shim, G. Y.; Kim, H.; Lee, J. K. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 2020, 30, 2004210.

39

Zhou, M.; Guo, S.; Li, J. L.; Luo, X. B.; Liu, Z. X.; Zhang, T. S.; Cao, X. X.; Long, M. Q.; Lu, B. A.; Pan, A. Q. et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 2021, 33, 2100187.

40

Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–2020.

41

Li, D.; Cao, L. S.; Deng, T.; Liu, S. F.; Wang, C. S. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem., Int. Ed. 2021, 60, 13035–13041.

42

Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

Nano Research
Pages 5081-5088
Cite this article:
Sun G, Zhou M, Dong X-Y, et al. An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Research, 2022, 15(6): 5081-5088. https://doi.org/10.1007/s12274-022-4116-x
Topics:

782

Views

6

Crossref

6

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 14 December 2021
Revised: 25 December 2021
Accepted: 26 December 2021
Published: 19 March 2022
© Tsinghua University Press 2022
Return